
County Line Creek High Vista Estates and Golf Course Stream Restoration

Executive Summary of Design Henderson/Buncombe County, North Carolina

prepared by:

Kimley-Horn and Associates, Inc. 3001 Weston Parkway

Cary, North Carolina 27513

November 2001 011795006

County Line Creek High Vista Estates and Golf Course Stream Restoration Hendersonville, North Carolina Henderson/Buncombe County

Prepared for Wetland Restoration Program Raleigh, North Carolina

Prepared by: Kimley-Horn & Associates 3001 Weston Parkway Cary, North Carolina 27513

> 011795006 November, 2001

1.0	INTRODUCTION	1
2.0 I	EXISTING CONDITIONS	1
2.1 2.2 H C 2.3 H	WATERSHED SITE DESCRIPTION A. Overview B. Golf Course Facilities, Structures, and Utilities C. Vegetation	1 2 3 3 4 4 5
3.0	GOALS AND OBJECTIVES	
3.1 3.2	DEFINITION OF RESTORATIONOBJECTIVES	6
4.0	METHODOLOGY/DESIGN CONSIDERATIONS	6
4.1 4.2. 4.3 4.4 4.5 4.6 4.7	REFERENCE REACHES REGIONAL CURVES AND REGIME EQUATIONS NATURAL COMMUNITIES WATERSHED ASSESSMENT GOLF COURSE SURVEY (TOPOGRAPHIC AND GEOMORPHIC) GAGE STATION MEETING WITH HIGH VISTA FALLS STAFF	8 8 8
5. 0	PRELIMINARY RESTORATION PLAN	9
5.1 5.2	VEGETATION/BUFFER PLANTINGS DIMENSION, PATTERN, AND PROFILE	
5.0 N	MONITORING AND SUCCESS CRITERIA	11
6.1 6.2 6.3	Reference Photographs Channel Stability Plant Survival	12
7.0 N	MAINTENANCE	13
חר מיכ	DEEEDENGEG	

Figures

Figure 1 Figure 2 Figure 3 Figure 4	USGS Topo Quad/Drainage Area Location Map Location of Offsite Reference Reach 1 Location of Onsite Reference Reach 2					
	Appendices					
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	Pavement / Sub-Pavement Data Mountain Regional Curves Reference Reach 1 Data - Offsite Reference Reach 2 Data - Onsite Site Photos Meeting Minutes – High Vista Falls Meeting (November 1, 2001)					
	Tables					
	eam Segments					

1.0 Introduction

County Line Creek is located approximately nine miles south of Asheville and nine miles northwest of Hendersonville, NC. The project area runs immediately west of N.C. Highway 191 (NC 191) within the High Vista Falls Golf Course and the High Vista Estates resort. Portions of the reach represent the Henderson and Buncombe County line. County Line Creek was identified as a potential stream restoration/mitigation opportunity by the North Carolina Wetland Restoration Program (WRP). The resort community is currently evaluating restoration opportunities within the golf course setting.

Per its on-call natural resources investigation contract, Kimley-Horn and Associates (KHA) was retained to provide technical assistance to WRP staff in the planning, coordination with High Vista Estates, design, and construction stages of this project.

This document summarizes the background investigation, fatal flaw analysis, fieldwork, input from High Vista Falls, and methodologies that went into the preparation of the design. A feasibility study for this site, entitled "County Line Creek Restoration Site, High Vista Estates and Golf Course," was prepared for WRP by EcoScience Corporation in March of 2001.

2.0 Existing Conditions

2.1 Watershed

County Line Creek is a 2.5-mile reach of perennial tributary extending from a relatively steep mountain ridge east to its confluence with the Broad River in the French Broad River Basin (USGS 8-Digit Hydrologic Unit 06010105). The project area encompasses headwater reaches. Based upon USGS Skyland, NC Quadrangle 1991 and the feasibility study prepared by EcoScience (March 2001), the drainage area for this section of the stream is approximately 224 acres (0.35 square miles). The drainage area is shown in Figure 1.

The land uses within the drainage area primarily consist of average density single family residential, the golf course, and woodlands/forest areas. No significant industrial or commercial facilities were observed within the drainage area. Based upon field observation, the watershed

currently is being developed mainly as single family residential, with no significant commercial or industrial development.

Elevations within the drainage basin range from 2,980 feet (Chestnut Top) to 2,135 feet (NC 191). The average valley slope is 0.04%. The average stream gradient in the project area ranges from 0.0247-0.0472 %.

An environmental database search was performed by Environmental Data Resources, Inc. on May 25, 2001. The search was conducted to identify potential or actual environmental concerns listed in the federal, state, or local regulatory agency databases. The environmental database search did not reveal any reported environmental hazards on the subject property.

A database search of cultural and natural resources was performed through the State Historical Preservation Office, Archeology Office, and the Natural Heritage Program. According to the database review, any work performed on the sites described in the Preliminary Restoration Plan section (Section 5.0) would not affect threatened and endangered species or critical habitats, listed historical sites, or known archeological sites.

2.2 Site Description

A. Overview

County Line Creek is a tributary to the French Broad River. The headwaters of County Line Creek originate in the golf course at the base of a pond adjacent to the 11th green. The tributary flows to the southeast until it passes under NC 191; the tributary then turns north, discharging into the Broad River approximately 7,000 feet northeast of the golf course. The length of the stream segment located within the golf course and residential development is approximately 3,900 feet (Figure 2).

The portion of County Line Creek immediately west of NC 191 and within the boundaries of the golf course and resort was evaluated. The study area for this stream segment begins at the outlet of the pond at the 11th green (Photos 1 and 2). The stream extends downstream approximately 3,900 feet through the golf course and ends at a culvert under NC 191(Brevard Road) (Photo 3). The attached survey shows the location of the subject stream in relation to roads, golf course greens, ponds, and golf cart paths.

B. Golf Course Facilities, Structures, and Utilities

All adjacent structures and utilities are shown on the Preliminary Restoration Plan. There are five golf cart crossings (4 bridges, 1-48" RCP culvert) and two road crossings (both 60" RCP culverts). The stream runs along the edge of the fairway along the 12th hole (Photo 4). It continues between the fairway and the 12th green. The stream then runs under High Vista Falls Road. The 13th fairway crosses the stream twice. The stream then runs between the 13th green and the irrigation pond. It flows under Fairway Falls Road (twin 60" RCP culverts) and leaves the project site by flowing under NC 191 (twin 60" RCP culvert) (Photos 5,6, and 7).

C. Vegetation

Little to no vegetation is observed along the stream that runs within the golf course area (Photo 8). Small sections of patchy brush and weedy vegetation exist along the stream reach. This vegetation is observed between 200 to 500 feet downstream of the pond, at the 11th green (Photo 9). Along the last 200 feet of stream upstream of NC 191, there is a fairly stable section consisting of woody vegetation and small to medium diameter trees (Photo 10). In addition, there is a densely vegetated area along the tributary that confluences with County Line Creek at approximately 700 feet downstream of the pond, above the 12th green (Photos 11 and 12).

2.3 Channel Description

For discussion purposes, the stream channel can be divided into three segments, each with different morphologic characteristics. These segments are as follows:

Table 1 Stream Segments						
Segment	Location / Description	Rosgen Stream Type*	Approximate Linear Feet			
a	Begin project (STA 0+00) to STA 19+00	B/B4	1,900			
b	STA 19+00 to STA 34+00	Eb _{f-g} 4	1,500			
С	STA 34+00 to end project (STA 38+00+/-)	B/B4	400			

^{*} Per NCDENR's "Internal Technical Guide for Stream Work in North Carolina" April 2001 v3.0, a complete Morphologic Measurement Table is provided in the Preliminary Design Plans (attached).

^{**}Stationing based on centerline of existing alignment.

A. Horizontal and Vertical Stability

Segment a & c

The stream segment is a linear channel with little herbaceous vegetation lining the banks. Based on the Rosgen stream classification, the stream is a B4 stream type (Rosgen 1996).

The channel is slightly entrenched, exhibiting a bank height ratio ranging from 1.2 to 1.7 (low bank height/max bankfull depth). A channel that is not entrenched will exhibit a bank height ratio of 1.0. Down-cuts have resulted in an entrenched channel that has begun to actively erode the channel banks below the effective rooting depth of existing riparian vegetation (Photo 13).

The intermittent down-cutting has induced a channel that varies widely in width/depth ratio. The channel is trending towards lower width/depth ratios (below 5), which suggests that the channel incision is causing the stream type to migrate towards an unstable (G type) stream. However, rapid bank erosion is allowing the channel to transition to an F (wider) unstable stream type at a lower elevation during each bankfull event. There is severe bank erosion immediately downstream of the last bridge crossing, adjacent to the 13th fairway.

This evolution towards further instability will continue unless the stream is returned to a stable dimension, pattern, and profile with bank vegetation/buffer for stability.

Segment b

The stream segment is a linear channel with little herbaceous vegetation lining the banks. Based on the Rosgen stream classification, the stream is an $Eb_{f-g}4$ stream type (Rosgen 1996). Active down-cutting in this section has resulted in eroded channel banks (Photo 14).

B. Channel Materials

The stream substrate is predominately composed of fine gravel. No bedrock or rock outcroppings were observed throughout the stream reach. Modified Wolman Pebble Counts were performed to classify the substrate in the stream channel (See Appendix A for plots of the particle size distribution). The table below summarizes the channel materials based on the pebble counts:

	Table 2				
Channel Material					
	Particle Size - Millimeters				
% sand and <	12-23	· · · · · · · · · · · · · · · · · · ·			
% Gravel	73-85				
% Cobble	4-6				
% Boulder	0				
% Bedrock	0	· · · · · · · · · · · · · · · · · · ·			
D16 (mm)	1.6				
D35 (mm)	6.1				
D50 (mm)	8.0				
D84 (mm)	27	***************************************			
D95 (mm)	45				

C. Vegetation as Bank Protection

Trees and shrubs are absent from banks (Photo 15). The root mats from the maintained grasses are shallow and discontinuous, providing little or no protection against bank erosion.

D. Water Quality

The North Carolina Department of Environment and Natural Resources (NCDENR) - Division of Water Quality (DWQ) has designated this stream as a Classification C, Nutrient Sensitive Waters (NSW) stream. This classification applies to freshwaters that are protected for secondary recreation, fishing, propagation and survival of aquatic life, and wildlife. The supplemental NSW classification applies to streams that are subject to growths of microscopic or macroscopic vegetation requiring limitations on nutrient inputs.

Based upon visual observations, the stream appears to have relatively good water quality and clarity. No odors or sheens were observed in the stream.

E. Aquatic Habitat

Minimal habitat was observed along the stream reach. This lack of aquatic habitat is primarily due to the absence of canopy cover and buffer along the stream.

3.0 Goals and Objectives

3.1 Definition of Restoration

Stream restoration is defined as "the process of converting an unstable, altered or degraded stream corridor, including adjacent riparian zone and flood-prone areas to its natural or referenced, stable conditions considering recent and future watershed conditions. This process also includes restoring the geomorphic dimension, pattern and profile as well as biological and chemical integrity, including transport of water and sediment produced by the stream's watershed in order to achieve dynamic equilibrium." ("Internal Technical Guide for Stream Work in North Carolina" April 2001 v.3.0).

3.2 Objectives

The objective of this project is to design adjustments to the stream reach that will increase its long-term stability and create a more functional riparian ecological community. The design for the existing stream will adjust geomorphic dimensions, patterns, and profiles. The proposed changes reflect stable conditions of reference reaches and their current geomorphic conditions. Additionally, vegetated buffers will be created that match proximal natural ecological communities found in similar physiographic and climatic regions. The reach will be redesigned to maximize natural design in light of the needs of the golf course and physical constraints within the project area.

4.0 Methodology/Design Considerations

The design methodology for stream restoration follows guidelines set forth in the "Internal Technical Guide for Stream Work in North Carolina" (April 2001 v.3.0) produced by NCDENR. A summary of the analysis and coordination performed includes:

- Reference reach geomorphic survey (Rosgen Level II)
- Assessment of natural communities (existing and reference)
- Assessment of the watershed condition and potential
- Rosgen Level II classification of the stream

- Geomorphic field measurements
- Identification of constraints and opportunities
- Detailed topographic and geomorphic survey of the project corridor
- Meetings with golf course management
- On-site interview with adjacent property owner

A preliminary plan (See attached Preliminary Restoration Plan) was developed using the above analysis as well as input gained from the analysis and coordination that was performed.

4.1 Reference Reaches

Two reference reaches were chosen to serve as a blue print for design. The first reference is the headwaters of Raccoon Creek located in Waynesville, NC. This information was gathered and compiled by NRCS in Waynesville, NC. The location is shown in Figure 3. Based on the Rosgen classification, this section of Raccoon Creek is classified as an E5 stream type. The information gained from the upstream reference was used in designing the dimension of the proposed stream (segment b).

A second reference reach was chosen to provide/confirm the dimensionless ratios for designing the proposed pattern, dimension, and profile of the proposed stream. The reference incorporates two stable sections within the golf course area. The first section runs between Station 38+50 and 39+50 upstream of NC 191 (Photo 16). The second is a stable section of tributary that is located upstream of the pond area and runs adjacent to the 11th green (Photos 17 and 18). The locations are shown in Figure 4. Based on the Rosgen classification, these sections of County Line Creek are classified as a B stream type. The information gained from the reference reaches was used in designing the dimension of the proposed stream (segments a and c).

The complete morphologic measurements of both reference reaches are provided in the Preliminary Restoration Plan (Sheet 3A). This morphologic measurement table is per the "Internal Technical Guide for Stream Work in North Carolina" (April 2001 v.3.0).

4.2. Regional Curves and Regime Equations

The North Carolina Mountain Regional Curves were used to calibrate/verify primary stream bankfull characteristics (width, depth, cross-sectional area and discharge) for this stream. The reference reaches were used as the basis for design, while the mountain curves were used simply as a check. The regional curves are provided in Appendix B.

4.3 Natural Communities

Existing natural communities and species were identified through field reconnaissance, both adjacent to the stream and at the reference reach. The vegetation along the stream within the project area is generally maintained grass with sparse weedy/woody vegetation upstream, near the confluence of the tributary, upstream of the 12th green. There is also a 100 feet of wooded area immediately upstream of NC 191 (Photos 10 and 16).

Species will be selected that are appropriate for the golf course areas and to maximize buffer potential.

4.4 Watershed Assessment

Watershed conditions were assessed by field reconnaissance. Existing watershed conditions are described in Section 2.1 of this report. For the purpose of this design, it was assumed that there would be no major future commercial/industrial development in the watershed.

4.5 Golf Course Survey (Topographic and Geomorphic)

A detailed survey of the golf course showed several physical limitations to restoration design. Notable obstacles include the golf course greens and fairways, five golf cart crossings, and two road crossings. A detailed description of the golf course existing conditions is included in Sections 2.2 and 2.3. The morphology of County Line Creek located in the project area is in the Morphology Measurement Table in the attached Preliminary Restoration Plan (Sheet 3A).

4.6 Gage Station

Survey data from the gage station located on Mills River in Mills River, NC, along with current rating table information and 9-207 forms, was collected and used to determine annual peak discharge for the watershed. Based on this information, hydraulic geometry relationships can be formulated for bankfull discharge, cross-sectional area, width, and mean depth as functions of the watershed area. This analysis is used to verify and support the established regional curves for a specific size watershed and hydrologic region used in the design.

4.7 Meeting with High Vista Falls Staff

A meeting was held on November 1, 2001 on-site to discuss the preliminary plans for the restoration of County Line Creek and adjacent riparian corridor. The purpose of the meeting was to discuss the conservation easement, buffer species type and density, buffer height, and buffer maintenance. See Appendix F for meeting minutes.

5. 0 Preliminary Restoration Plan

The preliminary restoration plan for County Line Creek involves restoring the altered stream corridor including adjacent riparian zones to its referenced, stable condition. In addition, the design is intended to account for the needs of the golf course, public safety, local agencies, and physical constraints within the project area. Restoration will modify the stream's dimension, pattern, and profile to stable conditions. In-stream structures will be used to protect stream banks, provide habitat, control grade, protect course facilities (cart crossings/pedestrian bridges, and greens) and riparian buffers.

The types of structures anticipated to be incorporated into the mitigation project include rock cross vanes, root wads, and log vanes. Refer to the Preliminary Restoration Plan for structure details. The approximate locations of known structures are shown on the attached plans. Structures may need to be removed or added during final design and/or construction.

All restoration activities will take place in a conservation easement donated by High Vista Falls to WRP. An additional easement will need to be coordinated and obtained along the section of the stream that is privately owned (see Preliminary Restoration Plan). WRP is currently working on obtaining an option on this easement.

5.1 Vegetation/Buffer Plantings

The proposed vegetation within the golf course includes stream bank plantings and plantings in the adjacent riparian buffer. The banks will be planted to provide stabilization, habitat, and shading.

Both unrestricted and restricted riparian buffer areas will be used within the golf course. The unrestricted buffer will be planted in the easement for areas outside of course play. A restricted buffer will be planted in the easement areas involved in course play. The constraints of course play require the exclusion of large canopy trees from the restricted buffer. The functionality of the trees will be replaced utilizing large woody debris within the stream channel, shrub and herbaceous plantings for shading, and shrub plantings for bank stability. Root wads and log vanes will provide habitat. Shrubs and herbaceous plantings will provide shading to the narrow stream channel. Shrubs rooting will provide bank stability and contribute additional detritus to the stream. These factors will help to offset functionality lost from the exclusion of canopy trees from the restricted buffer areas. Refer to Preliminary Restoration Plan for location of the planting areas and for species type and composition for each buffer zone.

5.2 Dimension, Pattern, and Profile

Due to the differences in the geomorphic features and physical constraints within the golf course area, two different restoration approaches were taken for three channel segments of County Line Creek.

Segment a and c (Sta 0+00 to Sta 19+00 & Sta 34+00 to 38+00)

Segment a and c is a straightened linear "B/B4" channel. In addition to the modification of the stream, the floodplain and valley have been drastically modified during the development of the golf course and surrounding community. The stream will be converted to a stable/referenced condition that is appropriate to the current valley and watershed. The channel in this segment will be modified to a stream type "B4" appropriate for the valley type and channel slope. The channel dimension will be modified to increase the width to depth ratio and reduce bank height ratios (See attached Preliminary Restoration Plan for typical section). The pattern will be

modified slightly to relocate areas where the stream is eroding into the banks of the golf course greens and to move the stream away from the fairway in order to increase vegetation buffer widths.

The profile will be modified with the use of grade control structures. As discussed in Section 2.3, the stream has down cut. The mitigation plan includes grade control to prevent this down cut from moving upstream. Structures will maintain the profile of the stream preventing it from incising and abandoning its current and future constructed active floodplain.

Segment b (Sta 19+00 to Sta 34+00)

Segment b is an incised "Eb_{f-g}4" stream channel. The restoration of this segment will involve modifying the stream's dimension, pattern, and profile to create a stable "E5c" stream type.

The dimension in this segment will be modified to provide the appropriate cross-sectional area to transport sediment and the bankfull discharge. A bankfull bench will be created to reduce bank height ratios and shear stress associated with storm events greater than bankfull (See attached Preliminary Restoration Plan for typical sections).

The pattern will be modified where possible to add stream length and to provide appropriate (reference) geometry. This geometry includes meander length, radius of curvature, belt width, and amplitude.

The profile will be modified to match the modified plan features and reference condition. The profile will create the appropriate local grade changes that are necessary to create the features (riffles, runs, pools, and glides) associated with "E5c" stream types.

The proposed stream restoration plan is shown in the attached Preliminary Restoration Plan.

6.0 Monitoring and Success Criteria

6.1 Reference Photographs

Monitoring: Photographs will be taken throughout the monitoring period to evaluate vegetative growth along the stream corridor of the restoration site. Locations of the photograph points will be established and marked with stakes. A map with notations of the photo reference points will

be generated. This aspect of monitoring will last for five (5) years. Photo-monitoring will include lateral as well as longitudinal photographs.

<u>Success Criteria</u>: Photographs will be used to subjectively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation and effectiveness of erosion control measures. Longitudinal photos should indicate the absences of developing bars within the channel or an excessive increase in channel depth. Lateral photos should not indicate excessive erosion or continuing degradation of the bank over time. A series of photos over time should indicate successional maturation of riparian vegetation.

6.2 Channel Stability

Monitoring: Permanent cross-sections will be established and monitored along the stream corridor of the restoration site for each Rosgen classified stream type. Cross-sections will be placed to monitor structures and/or features that may have an increased risk of failure. The location of each cross-section will be marked to establish the exact transect location. A common benchmark will be used for cross-sections and consistently used to facilitate easy comparison of year to year data. Data will be collected once a year for five (5) years.

<u>Success Criteria</u>: Judgements of success or failure of restoration activities using this data will be subjective. It is expected that there will be minimal changes in the cross-sections of the "as-built" and monitored years. Changes in the cross-sections that may occur during the monitoring period will be evaluated to determine if they represent a movement toward a more unstable condition (down-cutting, deposition, erosion) or are minor changes that represent an increase in stability (settling, vegetative changes, decrease in width/depth ratio). Unstable conditions that require remediation will indicate failure of restoration activities.

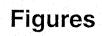
6.3 Plant Survival

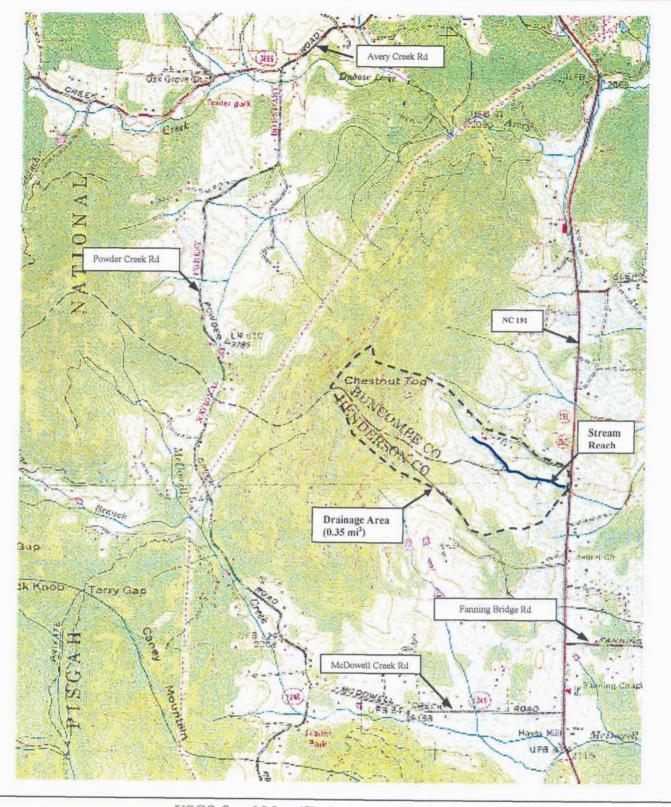
In order to establish vegetation in restoration areas, such as bankfull benches and slopes, seeds, bareroot, and containerized vegetation will be planted as shown on the plans or required in the Special Conditions.

Monitoring: Survival of vegetation will be evaluated using survival plots or direct counts. Survival of plantings will be evaluated along the stream corridor of the restoration site. Plantings will be monitored for five (5) years before success or failure is determined.

Success Criteria: Success of plantings will require a 70% survival rate based on sample plots.

7.0 Maintenance


The contractor will guarantee all vegetation per specifications for one year from time of planting. After the one year period, WRP will remove dead or injured plants and replace them accordingly to achieve restoration goals.


High Vista Falls will be responsible for minimal required maintenance (i.e. pruning). When pruning is needed, woody vegetation should be pruned with pruning cuts and not sheared. Woody vegetation can be pruned to a height of two feet below the elevation of the adjacent fairways. Crown reduction decreases the height of the shrubs and can be performed on most shrub species. Shrubs should be at least two feet high after crown reduction. Early spring (February 1 – March 30) is the best time to prune shrubs.

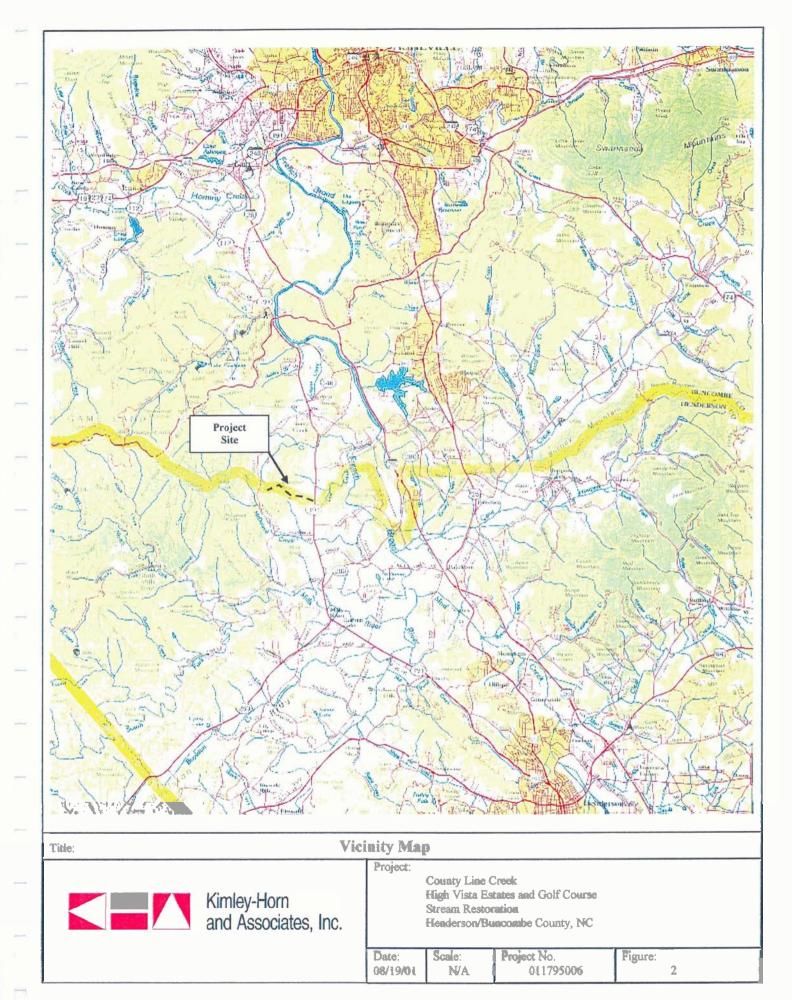
Invasive exotic plant species should be identified and treated for a minimum of five years. For woody invasives, cut stem off at ground level and apply a 25% solution of appropriate herbicide (Rodeo for riparian areas) right to the cut stump. Early fall is the best time for this treatment to be performed. For herbaceous weeds, use a herbicide and follow manufacturer suggested application rates.

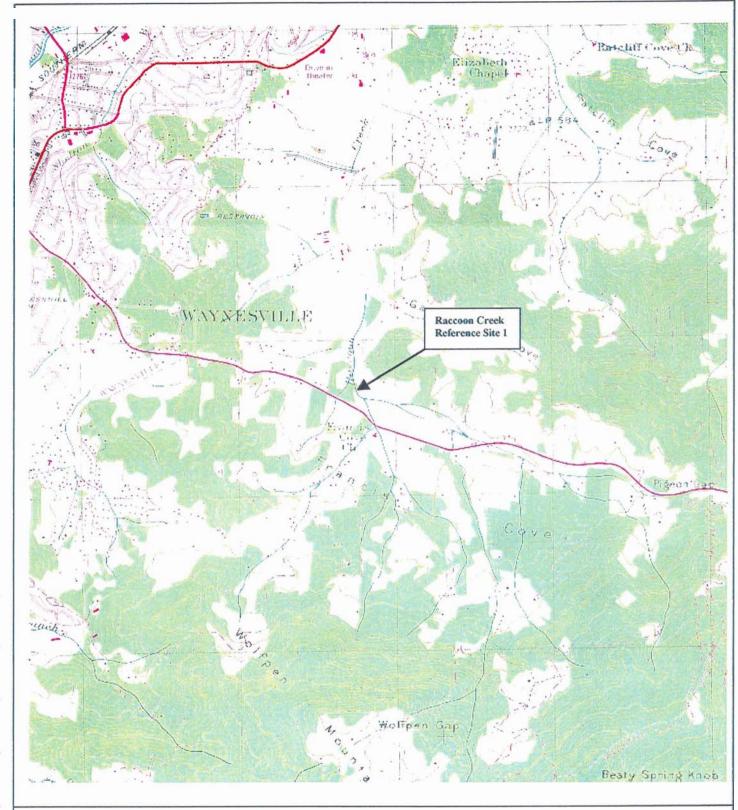
8.0 References

- Rosgen, David L. 1997. "A Geomorphologic Approach To Restoration Of Incised Rivers",
 Proceedings of the Conference on Management of Landscapes Disturbed by Channel
 Incision.
- Rosgen, David L. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.
- The Division of Land Resources (DLR) and The Division of Water Quality (DWQ), 2001 v.3.0. "Internal Technical Guide for Stream Work in North Carolina".
- EcoScience Corporation. 2001. "Feasibility Study, County Line Creek Restoration Site, High Vista Estates and Golf Course, Henderson County, NC".
- United State Geological Survey. 1991. USGS 7.5 Minute Series Topographical Maps "Skyland." US Geological Survey. Reston, Virginia.
- North Carolina Stream Restoration Institute, "Rural-Mountain Regional Curves". www5.bae.ncsu.edu/programs/extension/wqg/sri/urbanpiedmont.html.
- Hall, Karen. 2001. North Carolina Stream Restoration Institute NCSU, "Recommended Native Plant Species for Stream Restoration in North Carolina".

Title:

USGS Quad Map (Skyland, NC 1991)


Kimley-Horn and Associates, Inc.


Project:

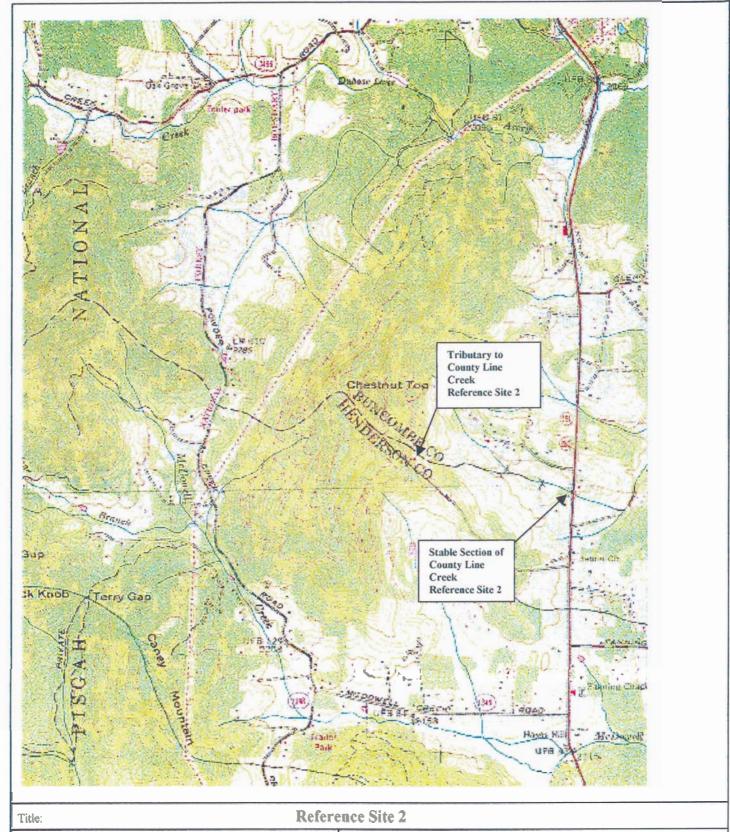
County Line Creek High Vista Estates and Golf Course Stream Restoration Henderson/Buncombe County, NC

Date: 08/19/01 Scale: 1:24,000 Project No. 011795006. Figure:

.

Title:

Reference Site 1

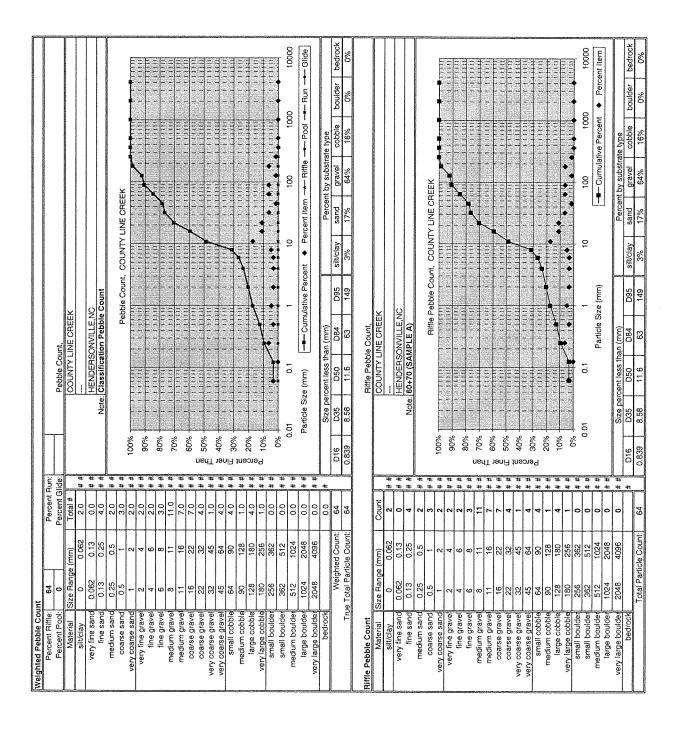

Project:

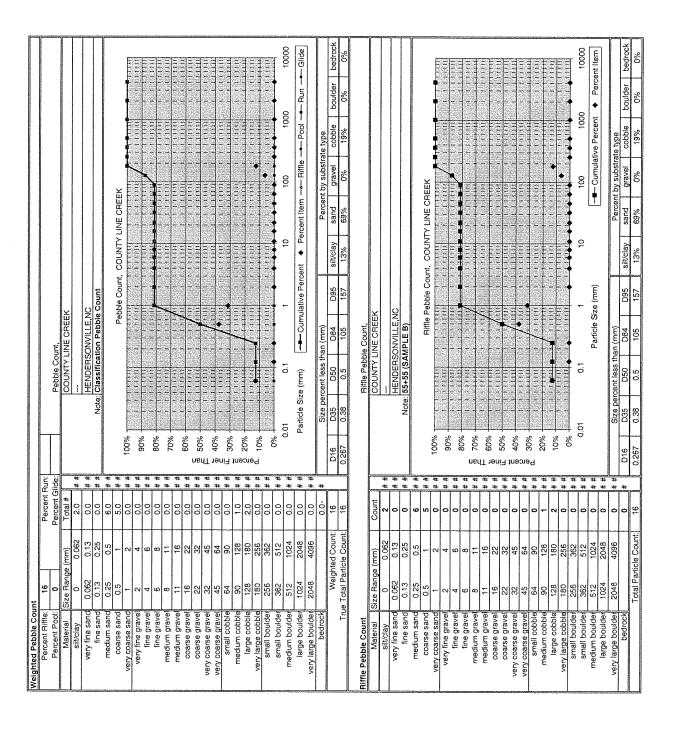
County Line Creek High Vista Estates and Golf Course Stream Restoration Henderson/Buncombe County, NC

Date	e:	
08/1	9	10

Scale: 1:24,000 Project No. 011795006 Figure:

3




Project

County Line Creek High Vista Estates and Golf Course Stream Restoration Henderson/Buncombe County, NC

Date:	Scale:	Project No	Figure
08/19/01	1:24,000	011795006	4

Appendix A Pavement / Sub-Pavement Data

10000 Percent Item Percent by substrate type sand gravel cobble boulder bedrock 10000 -■--Cumulative Percent ◆ Percent Item ---- Riffle ---- Pool ---- Run ----- Glide % ponider %0 % ٠ 1000 Percent by substrate type 23% gravel 60% 9 9 Riffle Pebble Count, COUNTY LINE CREEK COUNTY LINE CREEK sand 13% sand 13% sittclay 5 sittclay 4% Pebble Count, 118 118 Particle Size (mm) HENDERSONVILLE,NC Classification Pebble Count HENDERSONVILLE, NC 45+45 (SAMPLE C) Pebble Count, COUNTY LINE CREEK COUNTY LINE CREEK

 Size percent less than (mm)

 D35
 D50
 D84

 14.48
 34.8
 88

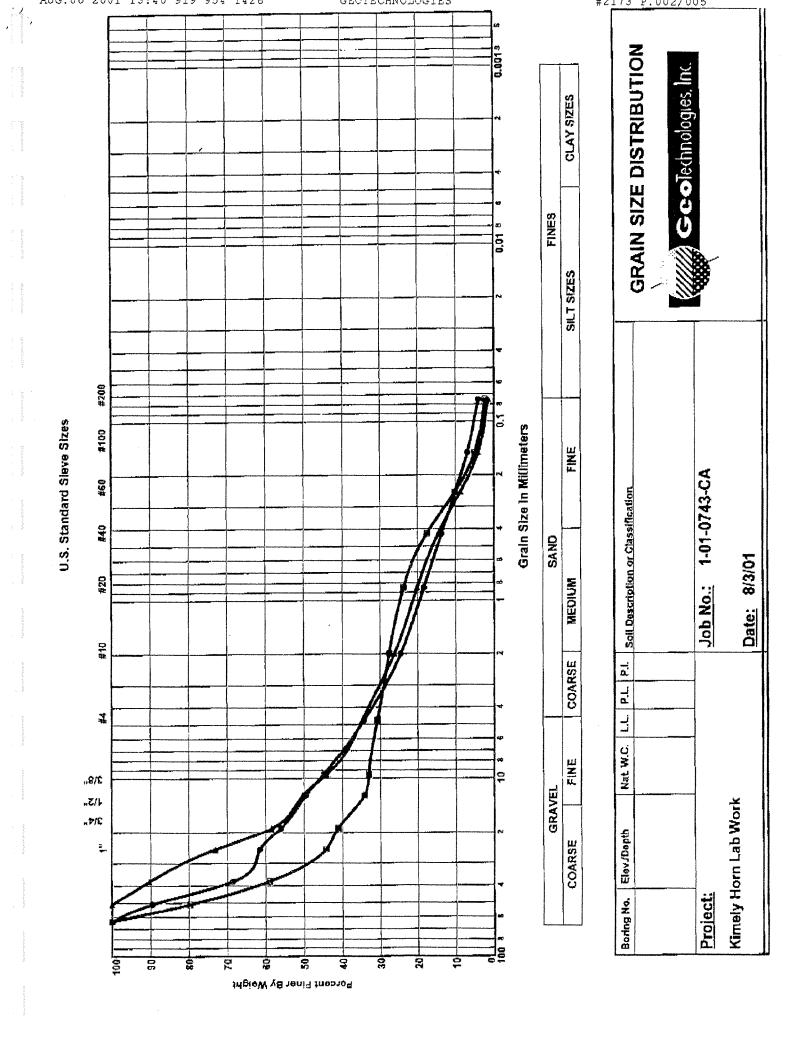
 Size percent less than (mm)

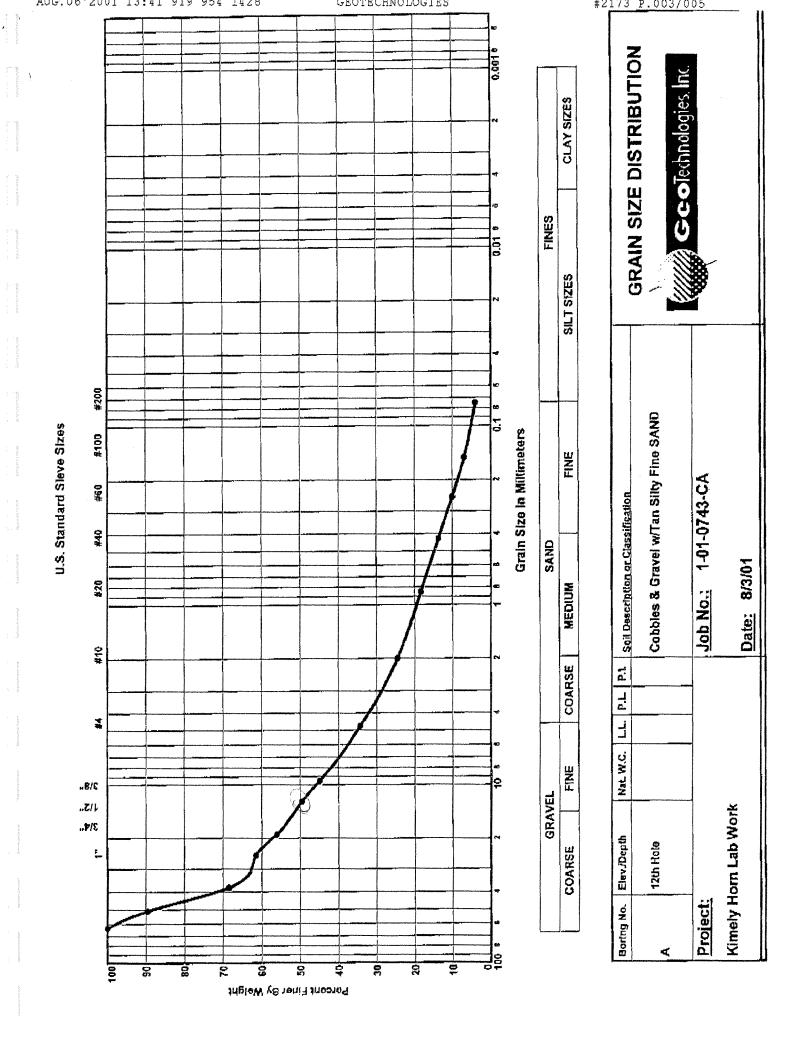
 D35
 D50
 D84

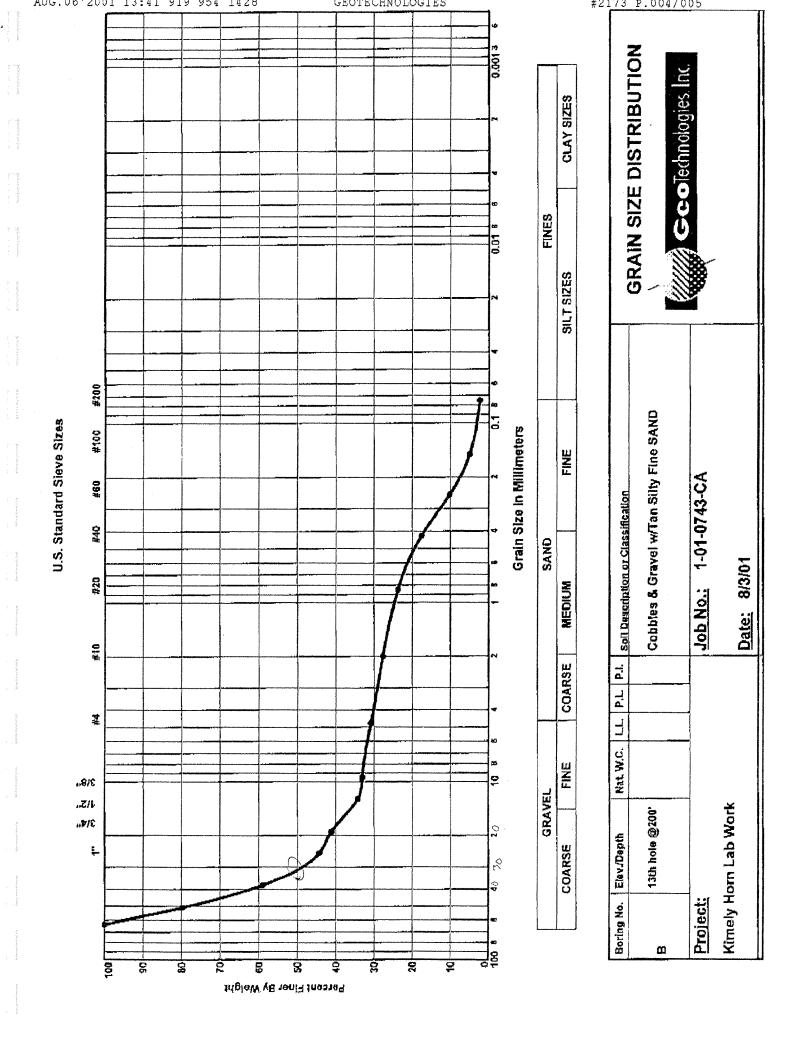
 14.48
 34.8
 88

 Riffle Pebble Count 0.7 0.1 Particle Size (mm) D35 14.48 10% %06 %08 70% 60% 50% 20% %02 %09 30% D16 1.248 1.248 D16 Percent Glide 0.0 22 22 22 Weighted Count. True Total Particle Count. Fotal Particle Count: 4096 2048 0 22 Weighted Pebble Count very fine sand fine sand very coarse sand very fine gravel fine gravel coarse sand
very coarse sand
very fine gravel
fine gravel Percent Riffle: Percent Pool: very fine sand fine sand large cobble very farge cobble coarse gravel
coarse gravel large cobble very large cobble small boulder very coarse gravel small cobble medium cobble medium boulder large boulder coarse sand medium gravel medium sand medium sand medium grave coarse gravel coarse gravel very coarse gravel small boulde small boulde medium boulde very large boulder bedrock medium gravel medium grave small boulder very large boulder very coarse grave small cobble medium cobble Material Riffle Pebble Count

Water control of the control of the

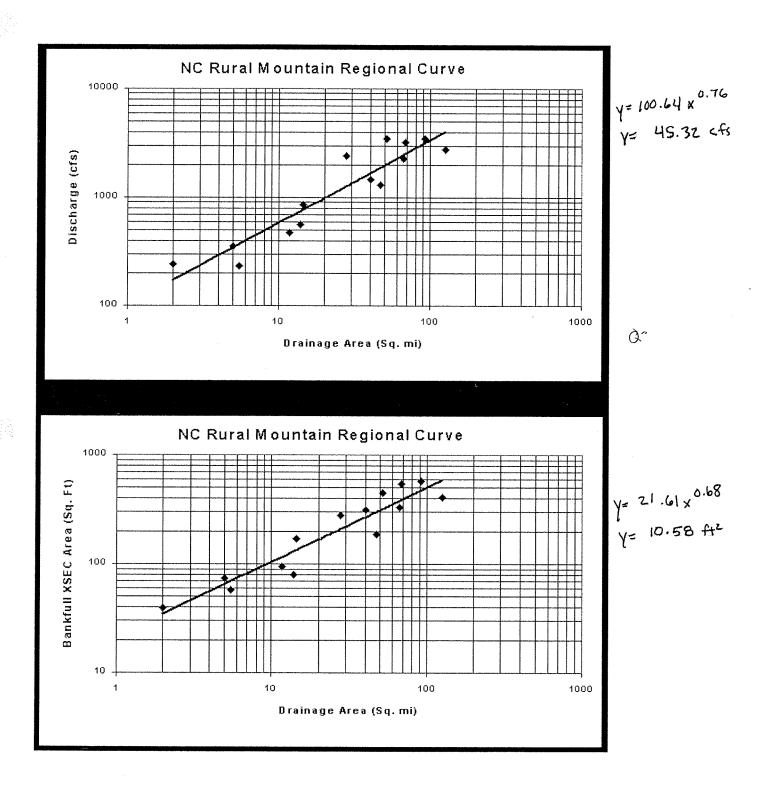

The state of the s

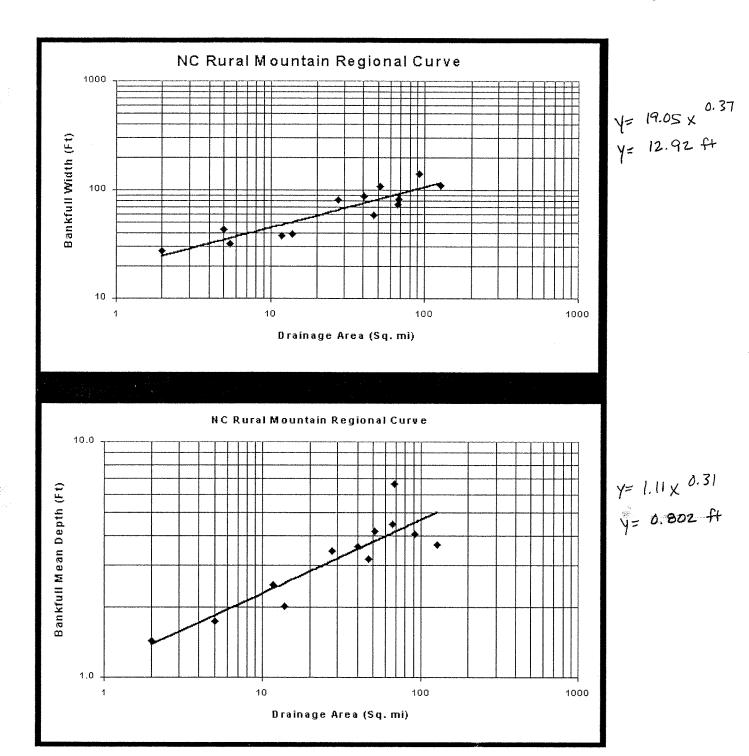

Proposition and a second


.


.

Street





Appendix B Mountain Regional Curves

County Line Creek DA = 0.35 miz

Table of Regional Curve data for the Mountain region:

Stream Name	Gage Station ID	Stream Type (Rosgen)	Drainage Area (mi2)	Bankfull Discharge (cfs)	Bankfull Xsec Area (ft2)	Bankfull Width (ft)	Bankfull Mean Depth (ft)	Water Surface Slope (ft/ft)	Return Interval (Years)
French Broad at Rosman	3439000	E4	67.9	3226	544.9	82.4	6.6	0.0009	1.3
Mills River	3446000	C4	66.7	2263	333	74.3	4.5	0.0035	1.9
Davidson River	3441000	B4c	40.4	1457	316	87.6	3.6	0.004	1.1
Catheys Creek near Brevard	344000	B4c	11.7	470	94.2	38	2.5	0.013	1.67
West Fork of the Pigeon	3455500	ВЗс	27.6	2433	277.9	80.6	3.4	0.0077	1.10
East Fork Pigeon River	3456500	В	51.5	3450	446.3	107	4.2	incomplete	1.59
Watauga River	3479000	B4c	92.1	3492	572	140.3	4.1	0.0033	1.25
Big Laurel	3454000	B4	126	2763	406	110.8	3.7	0.0045	1.59
East Fork Hickey Fork Creek	n/a	ВЗа	2.0	242	39.3	27.4	1.4	0.045	n/a
Cold Spring Creek	n/a	B4	5.0	352	74.4	42.9	1.7	0.025	n/a
Caldwell Fork	n/a	В	13.8	560	79.3	39.4	2.0	0.02	n/a
Cataloochee	3460000	B4c	46.9	1320	186.9	58.7	3.2	0.008	1.60
Bee Tree	3450000	B3	5.46	231.5	56	32.1	1.7	incomplete	1.85
North Fork Swannanoa	344894205	C3	14.5	855.7	170.6	69.3	2.5	incomplete	

Equations for the Regional Curve Relationships:

Bankfull Cross-Sectional Area vs. Drainage Area: $y = 21.61x^{0.68}$

Bankfull Discharge vs. Drainage Area: $y = 100.64x^{0.76}$

Bankfull Width vs. Drainage Area: $y = 19.05x^{0.37}$

Bankfull Mean Depth vs. Drainage Area: $y = 1.11x^{0.31}$

^{*} where x = drainage area

Appendix C Reference Reach 1 Data – Offsite

Name of Stream:

Raccoon Creek

Latitude:

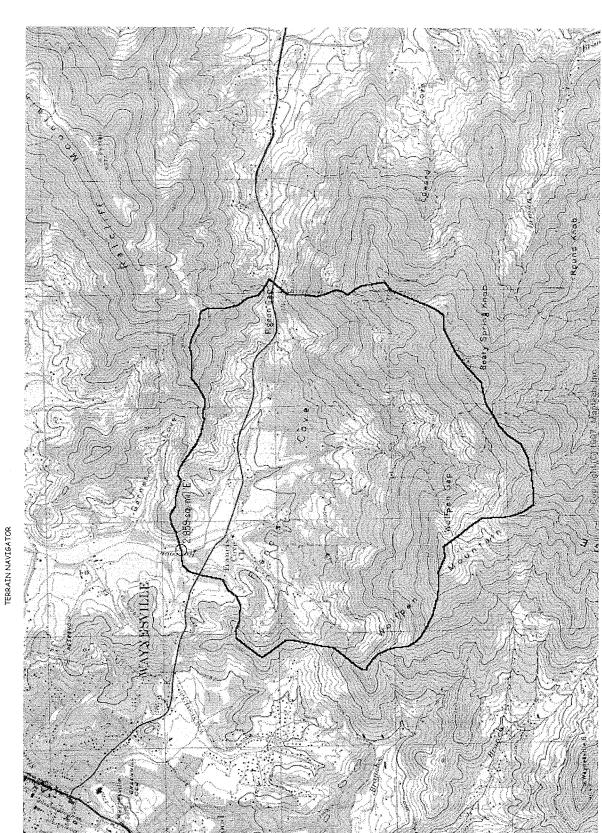
35 28' 44" N

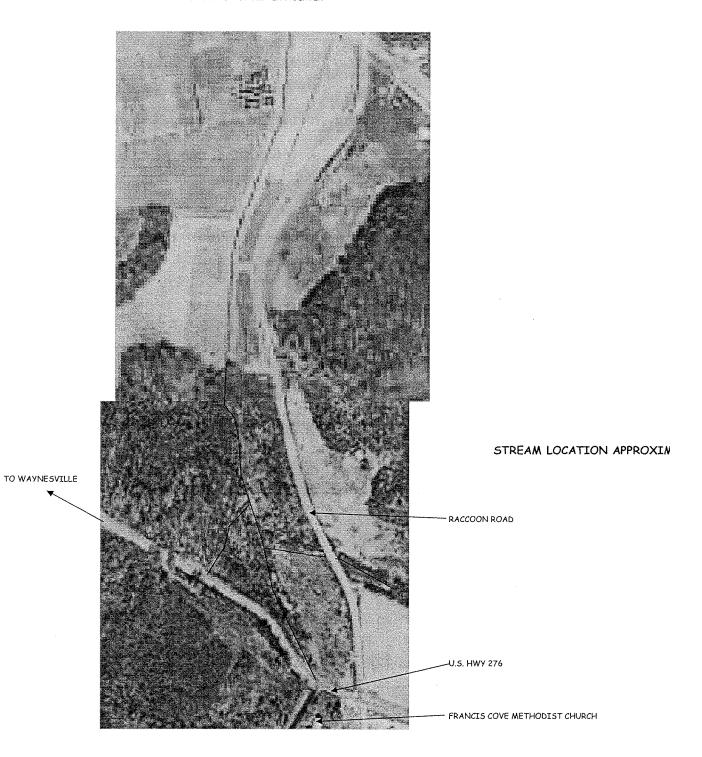
Longitude:

82 57' 51" W

Quad Sheet:

Waynesville


Watershed Area:


2.859 sq. mi.

Stream Type

E5

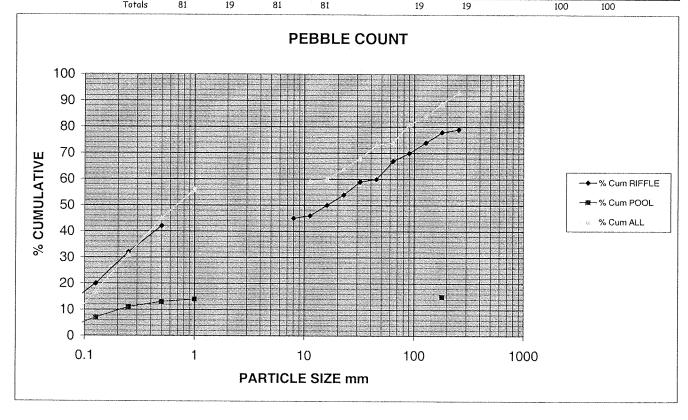
This site was Surveyed by Ron Morris, Jason Wheatley, and Alan Walker

Reference Site:

Raccoon Creek, Haywood Co.

VARIABLES	REFERENCE
	REACH
1. Stream Type	E5
2. Drainage Area	2.9
(Sq. Mi.)	
3. Bankfull Width	Mean: 15.67
(W/bkf)	Range: 15.44 - 15.90
4. Bankfull Mean Depth	Mean: 1.52
(d/bkf)	Range: 1.49 - 1.54
5. Width/Depth Ratio	Mean: 10.35
(W/bkf/dbkf)	Range: 10.03 - 10.67
6. Bankfull Cross-	Mean: 23.75
sectional Area (Abkf)	Range: 23.74 - 23.76
7. Bankfull Mean	5.53
Velocity (V/bkf)	5.46 - 5.59
8. Bankfull Discharge,	131.3
cfs (Q/bkf)	129.72 - 132.88
9. Bankfull Maximum	Mean: 2.55
Depth (d/max)	Range: 2.4 - 2.7
10. Max. driff/dbkf Ratio	Mean: 1.68
	Range: 1.61 - 1.75
11. Low Bank Height	Mean: 1.25
to Max. dbkf Ratio	Range:
12. Width of the Flood	Mean: > 100
Prone Area (Wfpa)	Range:
13. Entrenchment	Mean: >2.2
Ratio (Wfpa/Wbkf)	Range:
14. Meander Length	Mean: 49.4
(Lm)	Range: 30 - 84
15. Ratio of Meander	Mean: 3.15
Length to Bankfull	
Width (Lm/Wbkf)	Range: 1.94 - 5.28
16. Radius of Curvature	Mean: 12.2
(Rc)	Range: 8.5 - 15.8
17. Ratio of Radius of	Mean: .78
Curvature to Bank-	
full Width (Rc/Wbkf)	Range: .5599
18. Belt Width	Mean: 52
(Wbit)	Range:
19. Meander Width	Mean: 3.32
Ratio (Wblt/Wbkf)	Range: 3.27 - 3.37

20. Sinuosity (stream	T
length/valley length)	1.3
	1.5
(k)	0.014
21. Valley Slope (ft./ft.)	0.014
22. Average Slope	0.0109
(Savg) = (Svalley/k)	
23. Pool Slope	Mean: .003
(Spool)	Range: .0003006
24. Ratio of Pool Slope	Mean: .275
to Average Slope	
(Spool/Savg)	Range: .02755
25. Maximum Pool	Mean: 3.48
Depth (dmax.pool)	Range: 3.25 - 3.7
26. Ratio of Max.Pool	
Depth to Average	Mean: 2.29
Bankfull Depth	
(dmax.pool/dbkf)	Range: 2.18 - 2.4
27. Pool Width	Mean: 15.51
(Wpool)	Range: 14.7 - 16.31
28. Ratio of Pool Width	Mean: .99
to Bankfull Width	
(Wpool/Wbkf)	Range: .95 - 1.03
29. Pool Area	Mean: 30.69
(Apool)	Range: 29.39 - 31.99
30. Ratio of Pool Area	Mean: 1.29
to Bankfull Area	
(Apool/Abkf)	Range: 1.24 - 1.35
31. Pool to Pool	Mean: 102.5
Spacing (p-p)	Range: 42 - 163
32. Ratio of Pool to Pool	Mean: 6.54
Spacing to Bankfull	
Width (p-p/Wbkf)	Range: 2.72 - 10.25
33. Ratio of Pool Length	Mean: 1.60
to Bankfull Width	
(Plength/Wbkf)	Range: 1.3 - 1.89
34. Average Riffle Slope	0.012
35. Average Run Slope	0.036
36. Average Glide Slope	0.003
37. Ratio of Riffle Slope	
to Average Slope	Mean: 1.1
(Sriff/Savg)	Range: .92 - 1.28
I TO THE THE THE TAX T	<u> </u>

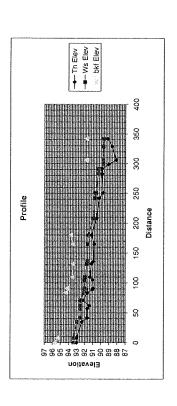


Mean: 3.30
Range: 1.38 - 5.23
Mean: 1.93
Range: 1.91 - 1.95
Mean: 1.03
Range: .59 - 1.45
Mean: 1.95
Range: .25 - 3.58
Mean: .275
Range: .092459
Mean: 1.88
Range: 1.88 - 1.88
Mean: 1.08
Range: 1.08 - 1.09
Mean: .94
Range: .8998
Mean: .77
Range: .5894

MATERIALS	
1. Particle Size	
Distribution of	
Channel Material	
D ₁₆	0.12
D ₃₅	0.3
D ₅₀	0.75
D ₈₄	64
D ₉₅	150
2. Particle Size	
Distribution of	
Bar Material	
D ₁₆	
D ₃₅	
D ₅₀	
D ₈₄	
D ₉₅	
3. Largest Size Particle	
Located on the Lower	
Third of Bar	
SEDIMENT TRANSPORT (BASED ON BANKFULL SHEA Calculated value (lb/ft2)	
Value from Shields Diagram (l	b/f†2)
Critical dimensionless Shear S	tress
Minimum Mean dbkf calculated	using Critical
dimensionless Shear Stress Ed	quations
Remarks:	
These Values and Ratios were	Calculated and Proposed by:

Name: Ron Morris

Title: Engineering Technician


Particle		Size (mm)	Particl	e Count	Total #	Item %	% Cum	Total #	Item %	% Cum	Total #	Item %	% Cum
			Riffle	Pool	RIFFLE	RIFFLE	RIFFLE	POOL	POOL	POOL	ALL	ALL	ALL
Silt/Clay	S/C	<.062		2	0	0		2	2	2	2	2	2
Very Fine	S	.062125	10	5	10	10	10	5	5	7	15	15	17
Fine	a	.12525	10	4	10	10	20	4	4	11	14	14	31
Medium	n	.2550	12	2	12	12	32	2	2	13	14	14	45
Coarse	ď	.50-1.0	10	1	10	10	42	1	1	14	11	11	56
Very Course	u	1.0-2.0			0	0		0	0		0	0	
Very Fine		2.0-4.0			0	0		0	0		0	0	
Fine	G	4.0-5.7	3		3	3	45	0	0		3	3	59
Fine	r	5.7-8.0	1		1	1	46	0	0		1	1	60
Medium	a a	8.0-11.3	4		4	4	50	0	0	***************************************	4	4	64
Medium	v	11.3-16	4		4	4	54	0	0		4	4	68
Coarse	e	16-22.6	5		5	. 5	59	0	0		5	5	73
Coarse	ا	22.6-32	1		1	1	60	0	0		1	1	74
Very Course		32-45	7		7	7	67	0	0		7	7	81
Very Course		45-64	3		3	3	70	0	0		3	3	84
Small	C o	64-90	4	1	4	4	74	1	1	15	5	5	89
Small	b	90-128	4		4	4	78	0	0		4	4	93
Large	b I	128-180	1	4	1	1	79	4	4	19	5	5	98
Large	e	180-256	2		2	2	81	0	0		2	2	100
Small	8	256-362			0	0		0	0		0	0	
Small	u I	362-512			0	0		0	0		0	0	
Medium	d	512-1024			0	0		0	0		0	0	
Large-Vry Large	e r	1024-2048			0	0		0	0		0	0	
BedRock	BDRK	>2048			0	0	0	0	0		0	0	
		Totals	81	19	81	81		19	19		100	100	

2													94.76					90.21			90.18				
Elev													5.24					9.57			5.41				
FS													99.78					95.59			98.3				
불													5.02					5.38			8.12				
85													-												
₽													ΤPI					TP2			TP3				
bkf Elev	95.7	95.4						94.35		94.23		93.55	93.48		93.5	93.78							91.82		91.8
Ws Elev bk	93.38	93.38	92.95	92.55	92.55	92.54	92.53	92.15	91.87	92.03	92.02	91.92	69.16	91.63	91.61	91.58	90.91	90.71	90.64	90.33	90.26	89.73	89.73	89.72	89.65
Th Elev W	92.99	92.98	92.34	91.67	91.67	91.45	92.23	91.65	91.04	90.98	91.01	91.34	91.19	90.93	90.83	91.16	90.57	90.21	89.75	89.87	89.87	89.08	88.15	88.65	89.18
bkf RR Description	4.3 Head of Riffle	4.6	Head of Pool	Pool	Pooi	Pool	Head of Riffle	5.65 Head of Run	Head of Pool	5.77 Pool dmax	scour pool	6.45 Head of Riffle	6.3 Head of Run	Run	6.28	6 Head of Riffle		Run				Head of Pool	6.48 Pool dmax	Head of Glide	6.5 Head of Riffle
Ws RR bkf	6.62	6.62	7.05	7.45	7.45	7.46	7.47	7.85	8.13	7.97	7.98	8.08	8.09	8.15	8.17	8.2	8.87	4.88	4.95	5.26	8.04	8.57	8.57	8.58	8.65
	7.01	7.02	7.66	8.33	8.33	8.55	7.77	8.35	8.96	9.05	8.99	8.66	8.59	8.85	8.95	8.62	9.21	5.38	5.84	5.72	8.43	9.22	10.15	9.65	9.12
Distance Th RR	0	80	35	42	57	62	71	84	68	16	105	110	132	136	165	180	208	242	251	283	291	299	306	329	342

100

Ë

FILE NAME: c:\u00e4wseproZO\u00fcreaenref\u00bfreaenref\u0

ANNERSARE SALES SEE SEE SEE SEE SEE SEE SEE WIN SPRO FREE SEE

GLIDE 0-16

RESISTENCE METHOD: Thorne and Zevenbergen D84: 64mm

					101 7 4 4 4 4 4 4 4 4	N 100 K		#####################################	86		- 0	7																	
	100														J		100												
BKF.	100	99.75	265	566	99.3	98.2	86	97.8	97.6	97.5	97.3	97.2	97.3	97.8	98.8	8.66	001												
E C	0	0,25	0,3	8,0	0.7	99	~	2.2	2.4	2.5	2.7	2.8	2.7	2.2	2	0.2	0												
Distance RR	0	8,0	1.7	89	G	9	9'9	7,1	8.6	õ	11.2	12.2	14	15.1	15.9	16,7	17.2												
SHICAR	(bst)	0.03	60:0	0.13	0,15	0.2	0.24	0.29	0.34	0,39	0.44	0,49	0.54	0.59	0.64	69'0	0.74	0.78	0.83	0.87	16'0	0.85	0.88	0.91	0.93	96'0	96'0	66'0	
3	(cfs)	0.02	0.25	0.88	1,35	2,6	4,33	98'9	9.92	13,45	17.49	22.29	27.59	33,37	39.65	46,32	53.48	61.09	69.13	17,61	86.53	88,58	97.93	107.9	118,51	129.78	138,59	151.45	
5444	(ft/s)	0.18	0.53	1.02	0.97	1.27	1.55	61	2,22	2,52	2.79	3.09	3.37	3.64	3.89	4.14	4.37	4.6	4.82	5,03	5,23	4.99	5,14	5.28	5,42	5.57	5,57	5,71	
=		0.12	0,074	0,051	90.0	0,053	0.049	0.046	0.044	0.043	0.041	0.04	0,04	0.039	0.038	0.038	0,037	0.037	0,037	0.036	0.036	0,036	0,036	980'0	0,035	0.035	0.035	0,035	
ארלים	(f1/f1)	0.011	0.011	0,011	0.011	0,011	0,011	0.011	0,011	0,011	0,011	0,011	0,011	0.011	0,011	0,011	0,011	0.01	0,011	0,011	0.011	0.01	0.011	0.011	0,011	0,011	0.011	0,011	
	£	0.05	0.13	61.0	0.23	0.29	0.35	0.43	0.52	0.59	0.67	0,75	0.84	0.92	10.	69	1.17	1.25	1.33	14	1.49	1.37	1.42	1.47	1.52	1.56	1.55	1,59	
									0.5																				
									8.66																				
E CALL	£	2.81	3,66	4.5	6,15	7,15	8.15	8,55	8.94	9.39	9.83	10.	10,36	10.62	10.89	11.15	11.41	11.68	11.94	12.2	12,46	14.36	14,92	15.48	16,04	16,6	17.8	18.4	
	(sd ft)	0.14	0,46	0.86	1.39	2.04	2.8	3,61	4.46	5,35	6.27	7.22	8.19	217	10,17	11.19	12,23	13,28	14,35	15,44	16,54	17,75	90'61	20,43	21,85	23,31	24,88	26,52	10.00
1		-	j	- -	_	-	- -	;	j	+-	-	-	-	-	-	-	⊢	-	-	}	j	-	- -	-	۳		;- -	- -	۲
	(44)	0	0.2	0,3	0.4	0,5	9,0	0.7	0.8	6'0		7	1,2	£,3	1.4	1,5	1.6	1.7	1.8	13	2	2.1	2.2	2,3	2.4	2,5	2,6	2.7	c

CROSS SECTION

FTLE NAME: c:\wxspro2O\racoonref\coonl.cut
IAPUT TILE NAME: c:\wxspro2O\racoonref\coonl.dat
RUN DATE: 10/13/00
ANALYSIS PROCEDURE: Hydroulies
GROSS SECTION NO. 1
SURVEY DATE: N. WALKER, J. WHEATLEY, R. MORRIS
SURVEY PARTY: A. WALKER, J. WHEATLEY, R. MORRIS

RESISTENCE METHOD Thorne and Zevenbergen D84: 64mm

RIFFLE AT 0+08

	TO THE PROPERTY OF THE PROPERT	ACITORS SECTION	NOTICE COLO		16	7 08					26	·5 0 5 10 15 20 25	DISTANCE		THE TAXABLE STATE OF THE PARTY										
RKF		45.4	į										45.4	į											
2	á	95.4	647	94 57	4	80.00	6 6	93.38	93.54	9414	94.26	9481	95.4	95.75	9	95.25									
8	4	4.6	IC.	4.5		702	7.01	6.62	6.46	5.86	5.74	5.19	4 6	4 25	4	4 75									
DISTANCE	· -	. 0	-	. 11	2.5	37	. 49	6.69	<u> 0</u>	: =	2	14.7	15.5	91		, K									
SHEAR	(bst)	900	0.11	0.15	61.0	0.22	0.26	0,31	0.36	0.41	0.46	0.5	0,52	0.52	0.56	9.0	0,65	79'0	0.7	0.75	0.8	0.84	68'0	0.93	96'0
œ	(cfs)	600	0.48	960	13	E	4.86	7.31	10,22	13.59	17.42	21.76	25,53	29,09	35,21	41.92	1,64	55.92	64,35	74.03	84.51	95,63	107.41	119,82	132.88
VAVG	(ft/s)	0,31	0,75	60	1,21	1,43	1.7	2,03	2.33	2,62	2.89	3,15	3,27	3,28	3,52	3.76	3.97	4.1	4,29	4.52	4.75	4.97	5,18	5.39	5,59
c		0.097	0.061	0.064	0.056	0.052	0.048	0.046	0.044	0.042	0,041	90.0	\$0.0	0,039	0.039	0.038	0,038	750,0	0,037	0,037	0.036	0,036	0,036	960'0	0,035
OPE	1/ft)	0,011	0,011	0.011	0.011	0.011	0.011	0,011	0,011	0,011	0,011	0,011	0.011	0.01	0.011	0,011	0,011	0.011	0,011	0,011	0,011	0,011	0.011	0.011	0.011
								0.48														1.32	1.39	1.47	1.54
_								0.46																1,36	1,42
																									15,44
ERIW	£	3.29	40,4	4.79	5.54	99'9	7.49	7.88	8.27	6.65	9.04	6.39	10.28	11,75	12.21	12,66	13,16	14.04	14.61	č	15.34	15,69	16.03	16.37	16,71
AREA																									
#SEC														۳	۰	-	۲.	; ~	-		J	j	۳	⊢	⊢
STAGE	Œ	0.1	0.2	0.3	0.4	0.5	9'0	0.7	0.8	6'0	-	7	1.2	1,3	1.4	5.	1,6	1.7	1.8	1.9	2	2.1	2.2	2,3	2.4

FILE NAME: c:wxspro20\racconref\contlart
INPUT FILE NAME: c:wxspro20\racconref\contlart
RNN DATE: ri0/13\to0
ANALYSIS PROCEDURE Hydraulies
GROSS SECTION NO. 1
SURVEY DATE: 10/11\to0
SURVEY DATE: A. WALKER, J. WHEATLEY, R. MORRIS ATTENTAL ON THE ATTENTAL ATTENTAL OF THE WASHINGTON WIN SPRONE

RESISTENCE METHOD Thome and Zevenbergen D84: 64mm

RIFFLE AT 0+08

		CBOSS SECTION			97 Transfer Company Co	96 Z						5 0 5 10 15 20	DISTANCE		- The state of the										
BKF	L	95.4				******			******	••••			95.4												
ELEV	96	95,4	94.7	94.57	94	92.08	92 99	93.38	93.54	94.14	94.26	94.81	95.4	95.75	96	95.25									
æ	4	4.6	E)	5.43	9	7.02	701	6.62	6.46	5.86	5.74	5.19	4.6	4.25	4	4.75									
DISTANCE	7	0		1.7	2.2	3.7	6.3	. m	01	11.1	13	14.7	15,5	316	18	32									
SHEAR																									
o ;																							107,41	119.82	00000
VAVG	(t4/s)	0.31	0.75	60	1.21	1.43	1,7	2,03	2,33	2,62	2.89	3.15	3,27	3,28	3,52	3.76	3,97	4,1	4.29	4.52	4,75	4.97	5,18	5.39	ii ii
c					0.056																				
SLOPE	(11/11)	0,011	0.011	0,011	0,011	0.011	0.011	0.011	0.011	0,011	0,011	0.011	0.011	0,011	0,011	0,011	0,011	0.011	0.011	0,011	0.011	0.011	0.011	0,011	1100
DHYD S	Ē	60.0	0.16	0.23	0.29	0,33	0.39	0.48	0.55	0,63	0.7	0.78	0.81	8,0	0,87	0.94	-	1.03	607	1.17	1.24	1.32	1.39	1.47	25.0
αį																									
MIOIN (45)																									
PERIM W.																									
AREA PE																									
#SEC	,	_	-	j -	-	 -	- -	-	-	-	-	-	-	-	_	-	-	-	-	;	-	۰	-	-	-
																		1.7							

FILE NAME: c:\uxspro20\traconref\coon7\traconr

RESISTENCE METHOD Thorne and Zevenbergen D84: 64mm

GLIDE AT 0+66

BKF	100	8.66	99.4	7.76	97.3	97.1	97.2	97.3	97.4	7.76	98	98.6	66	99.4	99.5	26.7	8													
Elev	0	0.2	9.0	2.3	2.7	5.9	2.8	2.7	2.6	2.3	7	1.4	-	9.0	0.5	0.3	0													
Distance RR	0	0.5	-	11	2	3.7	5.6	7.3	8.3	4,6	10.9	12.3	13.3	14.7	15.6	16.3	16.8													
SHEAR	(pst)	0.03	0.07	0.12	0.17	0.22	0.27	0.32	0.36	0.41	0.46	0.51	0.55	9.0	0.64	69.0	0.73	0.77	0.81	0.85	0.88	0.91	0.94	0.97	76'0		1.03	1.07	11	1.13
ø	(cfs)	0.02	0.21	0.89	1.96	3.67	5.9	8.66	11.93	15.73	20.37	25.52	31.18	37.34	43.99	51.12	58.69	66.75	75.29	84.32	93.42	103.05	113.2	123.89	131.99	143.96	156.61	170.97	185.27	200.26
VAVG	(ft/s)	0.18	0.4	0.79	1.08	1.44	1.76	2.06	2.33	2.59	2.88	3.16	3,42	3.66	3.9	4.12	4.34	4.54	4.74	4.93	5.09	5.25	5.41	5.56	5.57	5.71	5.85	6.03	6.18	6.33
E		0.12	980'0	0.062	0.058	0.052	0.048	0.046	0.044	0.042	0.041	0.04	0.04	0.039	0.038	0.038	0.037	0.037	0.037	0.036	0.036	0.036	0.036	0.035	0.035	0.035	0.035	0.035	0.035	0.034
SLOPE	(ft/ft)	0,011	0.011	0.011	0.011	0.011	0.011	0.011	0,011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
DHYD	£	0.05	0.1	0.17	0.25	0.33	4.0	0.48	0.55	0.62	0.7	62.0	0.87	0.95	1.02	11	1.18	1.25	1.32	1.39	1.45	1.51	1.57	1.63	1.61	1.66	17.1	1.77	1.83	1.88
α	(££)	0.05	0.1	0,17	0.25	0.33	4.0	0.46	0.53	0.59	99.0	0.74	0.8	0.87	0.94		1.06	1.12	1.18	1.23	1.28	1.33	1.37	1.42	1.41	1.46	1.5	1.56	1.6	1.65
WIDTH	£	2.75	5,3	6.52	7.12	7.71	8.3	8.81	9.31	9.85	10.06	10.3	10.54	10.77	11.01	11.25	11.51	11.76	12.02	12.28	12.63	12.99	13.34	13.7	14.72	15.2	15.68	15.97	16.38	16.8
PERIM	Œ	2.76	5.32	6.57	7.19	7.82	8.45	90.6	19.6	10.28	10.63	10.99	11.34	11.69	12.05	12.4	12.77	13.14	13.51	13.88	14.34	14.81	15.27	15.74	16.8	17.33	17.85	18.2	18.67	19.13
AREA	(sq ft)	0.14	0.54	1.13	1.81	2.55	3.35	4,21	5.12	6.07	7.07	8,08	9.13	10.19	11.28	12.39	13.53	14.7	15.88	17.1	18,35	19.63	20.94	22.29	23.72	25.21	26.76	28.34	29.96	31.61
#SEC		-	 -	j- -	-	۲	 	j	_	-	-	-	 - -	-	- -	j	 - -	}- -	;	;	j -	۳	} -	۳	- -	۳	- -	-	۳	-
STAGE	([4]	0,1	0.2	0.3	0.4	0.5	9.0	0.7	0.8	6.0	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	71	2.1	2.2	2.3	2.4	2.5	5.6	2.7	2.8	2.9

8

CROSS SECTION

8

8 10 DISTANCE

2 10/11/00 A. WALKER, J. WHEATLEY, R. MORRIS FILE NAME: c:\wespro20\raccouref\conn2.out
INPUT FILE NAME: c:\wespro20\raccouref\conn2.out
RUN DATE: 10/13/co
ANALYSIS PROCEDURE: Hydroulies
2
SURVEY DATE: 10/11/co
SURVEY PARTY: A WALKER, JI WHEATLEY, R, MORRIES

янняя ОМСХИМ вениненняя пенинення Михоминення в винине

RESISTENCE METHOD: Thorne and Zevenbergen D84: 64mm

POOL AT 0+91

CROSS SECTION

DISTANCE

ELEVATION

S S S S P P S

8KF	94.23							94.23		-																								
ELEV	94,23	93.21	92.03	96'06	91.22	91.48	93.87	94,23																										
æ	5.77	6.79	7.97	9.05	8.78	8,52	6.13	5.7																										
DISTANCE	0	2,6	5.7	o	12	13.4	47	14.7																										
SHEAR	(psf)	0.03	0.07	0.11	0.14	0.18	0,23	0.27	0.32	0.36	4.0	0.44	0.48	0.52	0.56	9'0	0,64	99'0	0.72	0.75	0.79	0.82	0.86	0.89	0.92	96'0	66'0	1.02	1,05	1,09	===	1,13	1,16	717
	~																																185.89	
VAVG	(ft/s)	0.13	0.37	0.73	1.19	1,17	1,51	1.81	2.08	2.34	2.58	2,83	3.07	3,31	3.53	3,75	3.95	4.15	4,34	4.53	4.71	4.88	5,05	5,22	5.38	5.54	5,69	5.85	49	6.14	6.26	6.37	6.49	6.55
c		0.157	680'0	0,061	0.046	0,055	0,05	0,047	0,045	0,043	0.042	0,041	0.04	0.039	0.039	0.038	0,038	0,037	0.037	0.037	0,036	0.036	0.036	0.036	0,035	0.035	0,035	0.035	0.035	0.035	0.034	0.034	0.034	0,034
SLOPE	~																																	
DHYD	£	0.05	0.1	0.16	0.21	0.27	0,34	0.42	0.49	0.55	0.62	69'0	0.76	0.B4	0.91	0.98	1.05	11	1.18	1.25	1.31	1.37	1.44	1.5	1.56	1.63	1.69	1,75	1.81	1.87	67	1.94	1.98	2
α																																		
WIDTH	£	1.24	5,49	3,55	4 ,	5,45	5,88	6.32	6.75	7.19	7,62	7.98	8.27	8.56	8.85	9.13	9.45	9.71	2	10,28	10,57	10,86	11.15	11,43	11.71	11.99	12,27	12,55	12.83	13,13	13,58	14,03	14.48	14.7
PERIM	£	1.26	2,52	3,61	4.58	5,55	40'9	9.9	7.12	7.64	8.17	8,62	9.01	9.39	9.78	10,16	10,54	10.93	11.31	11.7	12,08	12.47	12,85	13,23	13.61	13,98	14,36	14.74	15,11	15.5	15,99	16.49	16.98	17.23
AREA	(sq ft)	90'0	0,25	0.55	96'0	1.45	207	2,63	3.28	3.98	4.72	5,5	6.32	7.16	8,03	8.93	9.85	10,81	11.8	12,81	13.85	14.92	16.02	17.15	18.31	19.5	20,71	21.95	23.22	24,52	25.85	27.23	28.66	29,39
#SEC		۰	;	۳	-	-	-	!~	 - -	⊢	-	-	 	_	-	-	 - -	 	 	j —	-	 	þ÷.	 	Ļ	۰	-	⊢	۲-	۳	 - -) —	-	۰
STAGE	£	0.1	0,2	0.3	4.0	0.5	9.0	7.0	9.0	60	-	7	1.2	1.3	1.4	1,5	1,6	1,7	1,8	67	2	2.1	2.2	2.3	2.4	2,5	5,6	2.7	2.8	5,9	m	3.1	3.2	3.25

FILE NAME: c:\wxspr20\raceonref\tcon5\output
INPUT FILE NAME: c:\wxspr20\raceonref\tcon5\output
RNU DATE: 10/13/00
ANALYSIS PROCEDURE: Hydraulics
GROSS SECTION NO. 5
SURVEY DATE: 10/12/00
SURVEY DATE: 10/12/00

RESISTENCE METHOD Thorne and Zevenbergen D84: 64mm

RUN AT 1+34

	8														8															
8KF	8	99.75	98.8	66	566	99.5	98.75	98.1	87.8	97,15	57.5	97.8	98.5	686	8															
Elev	0	0.25	1,2	-	9.0	80	1,25	61	2.2	2,85	2,5	2.5	1.5	1	0															
Distance RR					==																									
SHEAR	(psf)	0.03	0.07	0.1	0.14	0.19	0,23	0.27	0.31	0.35	0.39	0.44	0,48	0.53	75'0	19'0	0,65	9.0	0.52	0.5	0.51	0,54	0,59	0.65	7.0	0,75	0.81	0.85	6.0	0.92
																													165.88	
VAVG	(ft/s)	0,13	0.37	69'0	1.2	1,21	1.51	1.79	2.06	2.31	2,57	2,83	3.08	3.32	3,55	3.78	3,99	3.78	3,44	3.35	3,39	3,58	3.87	4.14	4.41	4.67	4,92	5,13	5,34	5.44
c		0.165	600	0,063	0.046	0.054	0.05	0.047	0,045	0.043	0.042	0.041	0.04	0.039	0.039	0.038	0.038	0.038	0,038	0.038	0.038	0.037	0.037	0,036	0,036	0,036	0,035	0,035	0.035	0.035
SLOPE	$\overline{}$																													
DHYD																														
α	£	0.05	0.1	0,15	0.21	0.27	0.33	0.39	0.45	0.51	0.58	0.64	0.7	0.77	0.83	0.89	0.95	0.87	0.76	0,73	0.74	0.78	0.87	0.94	1,02	Ξ	1.18	1.24	1,3	1.34
WIDTH	£	1.09	2.18	3.27	4.	4,66	5.22	5,74	6.21	69.9	7.08	7.4	17.7	8,02	8.31	8.58	8.85	10.68	13,85	16.49	18,63	19,84	20.1	20,37	20.63	50'6	21,16	21.62	22.07	22.3
PERIM	Œ	1,11	2.23	3.34	4,2	4, 8	5,39	5,95	6.47	7	7.44	7.81	8.18	8,56	8.91	9.25	626	11.49	14.74	17.48	19.72	21.01	21.36	21.71	52.06	22,4	22,75	23.28	23.8	24.06
AREA	(sq ft)	0.05	0,22	0.49	0.87	1,3	1.8	2,35	2,94	3.59	4,28	S.	5,76	6,55	7.36	8.21	80'6	10,02	11.25	12.78	14.53	16.48	18.48	20,5	22,55	24,63	26.73	28.87	31.06	32,17
73S#		 - -	- -	۰	- -	- -	j _	-	!	۰	-	-	- -	-	}~	۰	,	- -	j-	- -	_	_	 	j -	;- -	-	-	⊢	F	 - -
STAGE	£	0.1	0.2	0.3	o,4	6,0	0.6	7.0	0.8	6.0		=	1.2	1.3	1,4	13	1.6	1.7	1.8	61	2	2,1	2.2	2,3	2,4	2.5	2.6	2,7	2,8	2.85

CROSS SECTION ELEVATION 8 8 8 0

FILE NAME: c:\wxspv20\racconref\racon3 out
IPVITELE NAME: c:\wxspv20\racconref\racon3 dat
RUN DATE: 10/13/00
ANALYSIS PROCEDURE: Hydraulies
GROSS SECTION: 3
SURVEY DATE: A: WALKER, J: WHEATLEY, R. MORRIS
SURVEY PARTY: A: WALKER, J: WHEATLEY, R. MORRIS

RESISTENCE METHOD: Thorne and Zevenbergen D84: 64mm

RIFFLE AT 1+53

		CROSS SECTION			101	Z 100 Z					0 0		DISTANCE		TO THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERT													
8KF	001	-							_			8			_													
	8	99.8	99.4	98.9	97.B	97.3	97.6	97.8	98.5	98.8	8	9																
Elev	o	0.5	9.0	=	2.2	2.7	2.4	2.2	5.5	1,2	-	0																
Distance RR	0	3,6	4,2	4,6	6.8	7	9	12	13.2	14.2	15,3	15,9																
																											0.91	
	_																				69.17	78	85.21	92,58	100,69	109.57	119.24	129.72
VAVG	(£/\s)	0.13	0.37	0.68	1,04	Ξ	1.48	1.83	2.15	2.44	2.72	2,98	3,23	3.42	3,61	3.8	3,93	4.07	4.31	4,55	4.78	ĸ	5.08	5.14	5,21	5.29	5,37	5,46
c																								_	-	_	0.035	_
SLOPE	(ft/ft)	0.011	0.011	0,011	0,011	0.011	0.011	0.011	0.011	0.011	0,011	0.011	0.011	0.011	0,011	0,011	0,011	0,011	0,011	0.011	0,011	0.011	0.011	0,011	0,011	0.011	0.011	0,011
DHYD	£	0.05	0.1	0.15	0.2	0,25	0,34	0.42	0.5	0,58	0.65	0,73	8.0	0.86	16'0	96'0	-	1.04	1.12	1.21	1.29	1.38	1.4	1,41	1.42	1.44	1.47	1.49
α	£	0.05	0.1	0.15	0.2	0.24	0,33	0.4	0.48	0.55	0.62	0.68	0,75	9.0	0.85	6'0	0.93	96'0	1.03	7	1.17	1.24	1.26	1.27	1.29	1.31	1,33	1,35
																											15,12	
																											16.69	
AREA	(sq ft)	90'0	0,24	0,55	0.98	1,52	2.15	2.8	3.49	4.2	4.94	5,71	6.5	7,34	8.22	9.15	10,13	11,17	12,26	13.36	14.47	15.6	16.76	18	19.32	20,72	22.19	23,74
#SEC)	-	-	þ-	۳.	⊢	j-	;	 - -	- -	<u>,</u>	۰	j	} -	, _	۰	⊢	_	}	j	j -	j	5	-	-	۰	F
STAGE	£	0.1	0.2	0.3	4.0	0,5	9'0	0.7	8'0	6.0	-	17	7,1	1.3	1.4	1.5	1.6	1.7	1.6	61	2	2.1	2,2	2,3	2,4	2.5	2.6	2.7

FTLE NAME: c:\unwspra2D\raceanref\sean8.auri
IN-BVI FTLE NAME: io\unsarga20\raceanref\sean8.dat
RUN DATE: io\unusarga20\raceanref\sean8.dat
RUN DATE: io\unusarga20\raceanref\sean8.dat
RUN ST PROCEDURE: Hydroulies
GROSS SECTION NO.
SURVEY PATE: io\unusarga20\raceanref\sean8.dat
SURVEY PATE: io\unusarga20\raceanref\sean8.dat
SURVEY PATE: io\unusarga20\raceanref\sean8.dat
RESISTENCE METHOD: Thoms and Zeverbergen
D84: 64mm

RUN 2+50

CROSS SECTION

						õ	ğ		8	HI 60		0																			
	8																100														
8K F	8	50	77	9.	4.	178	89	4	m	97.2	76		2	60	4	æ	8														
G Se																															
~	0	0.5	6.0	1.4	1.6	1.9	2.2	5.6	2.7	2.8	m	5.9	2.8	2.2	9.0	0.2	0														
Distance RF	0	0.2	6'0	1.2	2.5	3.2	3.3	4.7	89.63	6.7	1.7	7.6	9	=	11.5	12	12.4														
SHEAR	(bst)	0.03	0.07	0.11	0.15	0.2	0.25	0.29	0.34	0.39	0.45	0.5	0.54	0.58	0.62	69'0	0.65	0.7	0,75	0.79	0.84	0.88	0.92	0.95	66'0	1.02	1.05	1.09	1.13	1.16	1.19
ď	(cfs)	0.0	0.15	9.0	1.15	2.36	3.99	90.9	8.56	11.82	15.48	19.52	23.68	28.22	33.14	37.48	42.35	49.22	56.5	64.16	72.21	80.62	89.02	97.81	107.01	116.32	126.63	137.35	148.46	159.52	171.02
VAVG	(f1/s)	91.0	0.42	0.81	0.93	1.29	1.62	1.92	5.19	2.53	2.84	3.13	3.36	3.58	3.8	3.89	3.99	4.24	4.47	4.7	4.91	5.12	5.3	5.47	5.64	5.78	5.95	6.12	6.59	6.43	6.57
e		0,136	0.084	0.058	0.061	0.053	0.049	0.046	0.04	0.043	0.041	0.0	0.04	0.039	0.038	0.038	0.038	0.037	0.037	0.037	0.036	0.036	0.036	0.036	0.035	0.035	0.035	0.035	0.035	0.034	0.034
Q,	-									0.011																					
DHYD	(L)	0.05	0.11	0.17	0.22	0.3	0.37	0.44	0.51	9.0	0.7	0.79	0.86	0.94	101	1.03	1.06	1.15	1.23	1.32	1.41	5.3	1.57	1.64	1.71	1.76	1.83	161	1.98	2.04	2.1
										0.57																					
WIDTH																															
PERIM	Œ	5	3.33	4.43	5.73	6.29	6.84	7.4	7.96	8.17	8.38	8.59	8.95	9.31	29.67	10.43	11.19	11.41	11.64	11.86	12.08	12.3	12.61	12.91	13.22	13.58	13.85	14.12	14.38	14.71	15.05
AREA	(sq ft)	60:0	0.35	0.74	1.24	1.83	2.47	3.16	3.9	4.68	5.46	6.24	7.05	7.88	8.73	9.63	10.6	11.61	12.63	13.66	14.7	15.74	16.8	17.89	18.99	20.12	21.27	22.43	23.62	24.82	26.05
⊅35 #		-	- -	 -	-	-	þ-	- -	j	۴	-	۰	- -	þ-	۳	۰	-	۰	۳	۴	;-	-	-	F	-	_	 	 	۰	⊢	۰
STAGE	(£)	0.1	0.2	0.3	0.4	9.5	9.0	7.0	O.8	6:0	7	3	1.2	1.3	4.1	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	5.6	2.7	2.6	5.9	m

FILE NAME: c:\wxspro20\racconref\ccon4 out
IPMUT FILE NAME: c:\wxspro20\racconref\ccon4 dat
BUN DATE: 10/13/00
ANALYSIS PROCEDURE: Hydraulies
CROSS SECTION NO. 4
SURVEY DATE: A. WALKER, J. WHEATLEY, R. MORRIS
SURVEY PARTY: A. WALKER, J. WHEATLEY, R. MORRIS

RESISTENCE METHOD Thorne and Zevenbergen D84: 64mm

POOL AT 3+06

	The state of the s	CROSS SECTION			96						98	0 2 4 6 8 10	DISTANCE																									
	L	93.52												93.52																								
800	95.36	93.52	92.72	92.3	91,43	16	89.8	90.4	90.4	91.43	92.6	66	93.2	93.52																								
Š	4.64	6.48	7,28	7.7	79'8	6	10.2	9:6	9.6	8,57	7,4	7	8.9	5.48																								
æ	0	0		1.7					9.6																													
Distance					10		1	u,	Ų,	10	12	7	91	91																								
SHEAR	(pst)	0,03	0.07	0.1	0,13	0,16	0.18	0.22	0.26	0.3	0.34	0.38	0.42	0.46	0.51	0.55	0.59	69'0	99'0	0.72	0.76	9.0	0.84	0.87	0.91	0.95	86'0	101	1,04	1.04	1.05	1,07	1,08	1.09	11	1,13	1.16	1,19
ø	(cfs)	0	0.05	0,21	0.63	0.91	1.45	2,55	3.97	5.72	7.83	10,3	13,16	16,63	20.5	24.76	29.42	34.57	40.14	46.09	52,42	59.13	66.21	73,67	81.51	89,73	97,93	106,57	115,66	123,32	131,85	141,09	151.01	160,86	171,52	184,91	198.96	213,69
VAVG	(f1/s)	0,1	0,35	0.71	1.17	1.08	1.19	151	1.79	2,05	2.3	2,53	2.75	3,01	3,26	3.49	3,71	3.94	4,16	4.37	4,58	4.77	4,96	5.15	5,33	5.5	5,65	5.79	5,93	5.97	6.03	6.1	91.9	6.23	6,28	6.42	6,55	6,68
c									0.046																						_	_	_	_	0.034	_	0.034	0.034
SLOPE	(ft/ft)	0.011	0,011	0,011	0,01	0.011	0,011	0.011	0,011	0,011	0.011	0.011	0.011	0.011	0.011	0,011	0.011	0.011	0.011	0,011	0,011	0,011	0,011	0.011	0,011	0,011	0,011	0,011	0,011	0,011	0.011	0,011	0.011	0.011	0.011	0,011	0.011	_
DHYD	£	90'0	0.1	0.15	0,2	0.25	0.27	0,34	0.41	0.47	0,53	0.59	0.65	0.73	0.8	0.87	0.94	1.02	601	1.17	1.24	1.32	1.39	1.46	1,53	1.6	1.65	1.71	1,76	1,76	1,77	1,78	1.8	1.81	1.82	1.87	161	1.96
α	۳								0.38													1.16			1.33	1.38	1.42	1.47	1.51	1,52	1.54		-		1,6		1,68	-
WIDTH	£	99'0	1,35	2.03	2.7	3,38	4,55	5,01	5,47	5,94	4.9	98'9	7,32	7,6	7.87	8.14	8,42	B.64	8,83	9.02	9.22	9.41	9.61	9.8	0	10,19	10.49	10.8	11.1	11.74	12,35	12,95	13,55	14,28	15	15.44	15,88	16,31
																																				17.55		
AREA	(sq ft)	0,03	0.14	0,3	0.54	0.84	1.22	1.69	2.22	2.79	3.4	4,07	4.78	5,52	6,3	7.1	7,93	8,78	9.65	10.55	11.46	12,39	13.34	14.31	15,3	16.31	17,34	18,41	19.5	20.65	21,85	23,12	24.44	25.83	27.3	28.82	30,38	31.99
#SEC		۳	j- -	۲	; —	H	F	 	 	F	F	 	۳	۳	-	-	⊢	ب	j- -	۲	۳	۲	۲	F	۰	⊢ -	}	j- -	 	}	-	 	F	 	 - -	 - -	j	F
STAGE #	£	0,1	0.2	0.3	0,4	0,5	9.0	0.7	0.8	6'0	~	3	1.2	1.3	1.4	13	1,6	1.7	1,8	1.9	7	2.1	2.2	2,3	2,4	2.5	2.6	2,7	2,8	5,9	m	3.1	3.2	3,3	3,4	3,5	3.6	3.7

8 10 DISTANCE

Appendix D Reference Reach 2 Data – Onsite

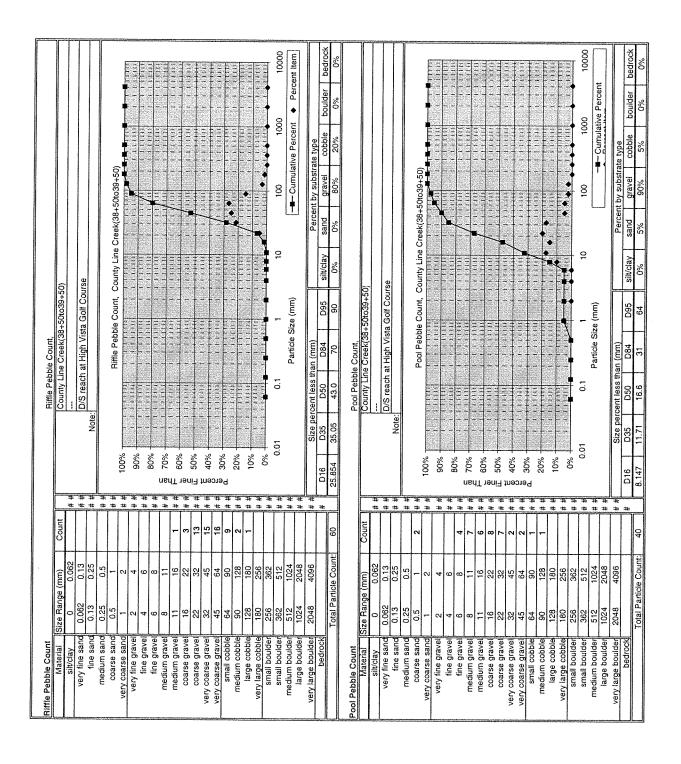
bedrock 10000 - Glide %0 boulder ◆ Percent Item → Riffle → Pool → Run 1000 cobble 14% Percent by substrate type gravel 84% Pebble Count, County Line Creek(38+50to39+50) sand 2% silt/clay % --- Cumulative Percent D/S reach at High Vista Golf Course Classification Pebble Count County Line Creek(38+50to39+50) D95 D84 Size percent less than (mm) Pebble Count 0.7 D20 31.4 Particle Size (mm) Note: D35 23.71 0.01 100% %06 80% 70% %09 20% 10% 40% 30% % 12.916 D16 Percent Run: Percent Glide: Total # 20.0 18.0 10.0 100 0.0 0.0 0.0 7.0 100 7.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 True Total Particle Count: Weighted Count: 0.062 0.13 0.25 512 1024 2048 4096 0.5 22 32 45 90 128 180 16 256 362 ω Size Range (mm) 0.062 2048 0.25 512 128 180 256 362 9 40 32 45 0 22 8 64 Weighted Pebble Count fine sand medium sand very large cobble very fine sand coarse sand very fine gravel fine gravel fine gravel medium gravel medium boulder very large boulden Percent Riffle: Percent Pool: medium gravel coarse gravel coarse gravel large cobble small boulder large boulder very coarse sand very coarse gravel very coarse gravel small cobble medium cobble small boulder bedrock Material silt/clay

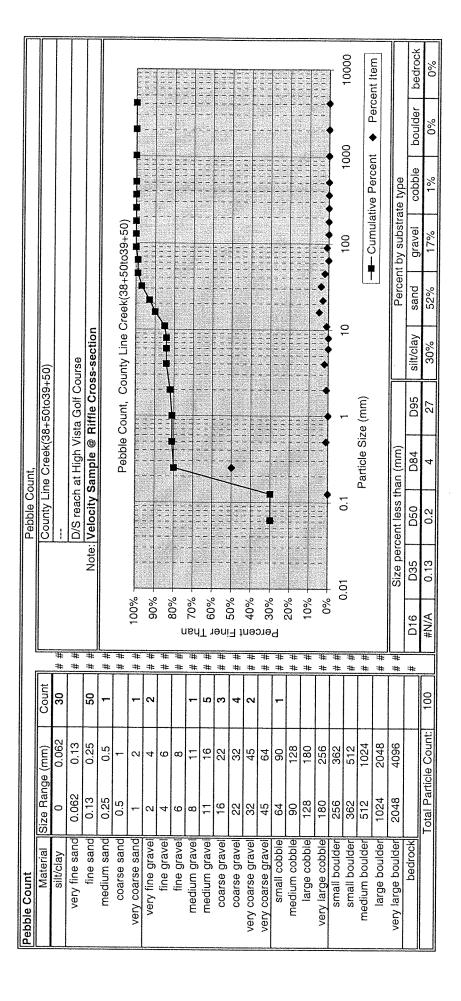
A CONTRACTOR OF THE PARTY OF TH

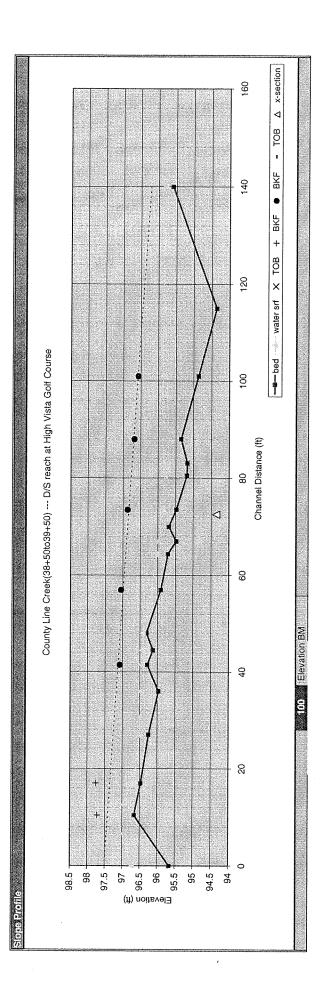
The state of the s

A Service Control

- Table Supplied Co

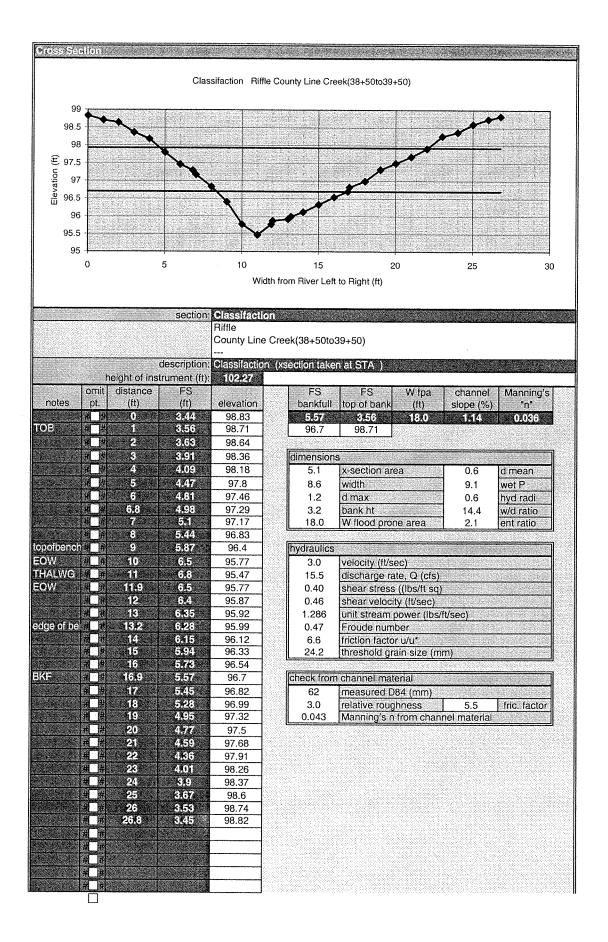

10000


priorities and a common of the common of the

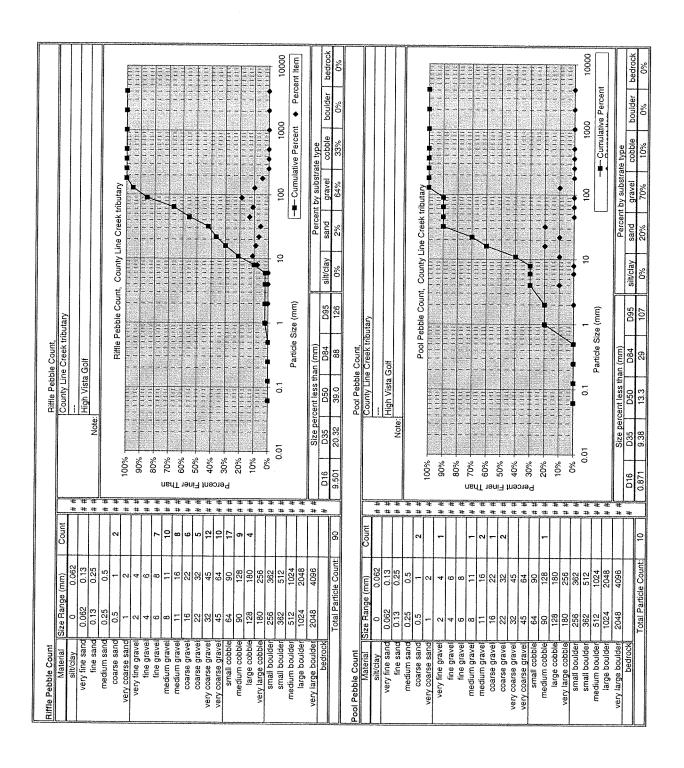

hed plantations while

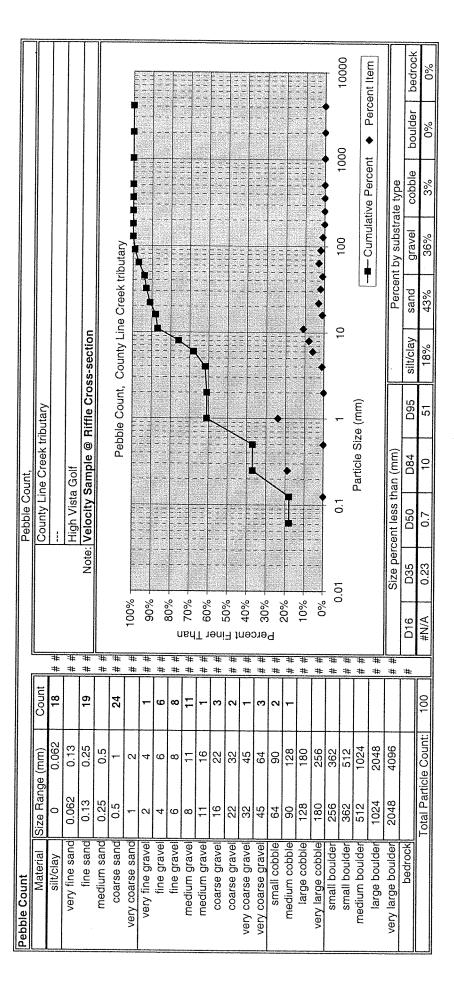
oreasiles 5

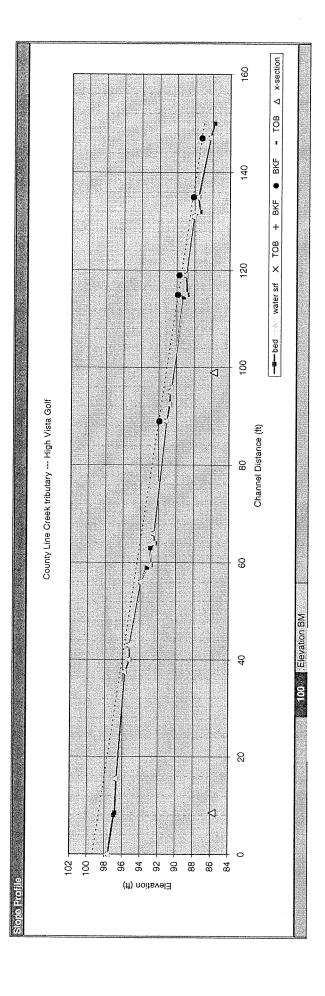
Section of many control

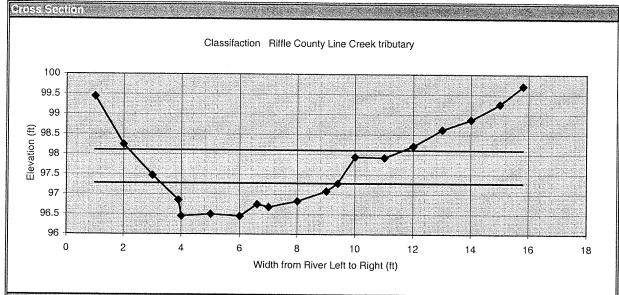

July No office

pathological


v dyskud


April American

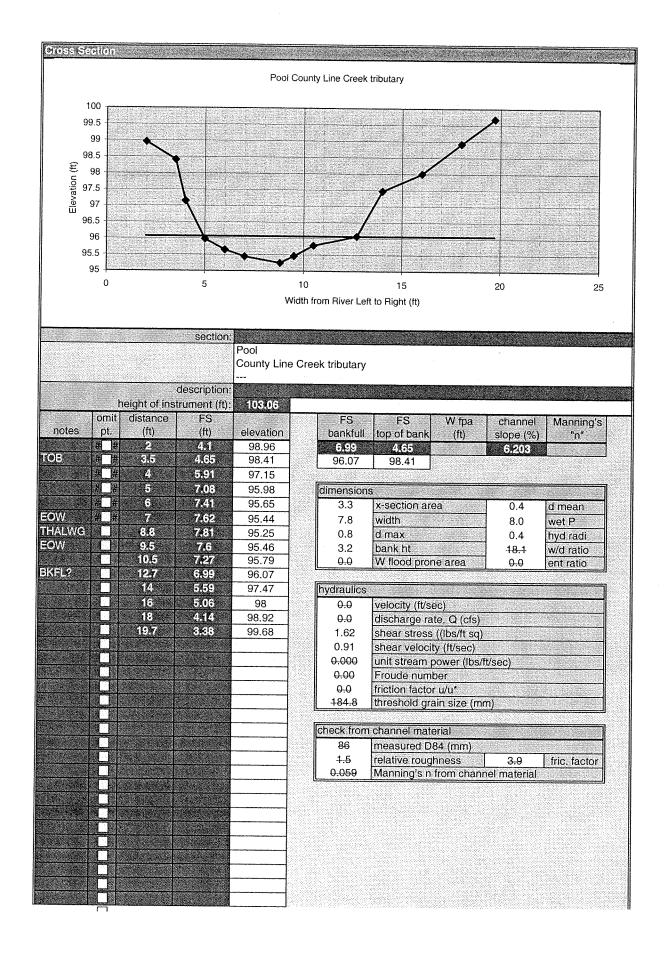

	1	108	Ī							<u> </u>	Ī		Ī	Ī		Ī		ľ	Ī							-	Γ		Γ	<u> </u>	Γ
	H			72	76		_																								
	H	BKF	36	97.72	97.76																				_						
	日日	TOB																		L											
		BKF						97.08			97.05					96.87			96.68	96.57								:			
	ELEV	water srf	96.73	97.16	96.67	96.5	96.47	96.47	96.44	96.42	96.16	90.96	96	95.89		95.88	95.81	95.87	95.83	95.86	95.86	95.8									
	H	bed	Н	99.96	96.47	96.25	95.97	96.29	96.13	96.32	95.91	95.71	95.48	95.69		95.48	95.18	95.17	35.35	94.86	94.36	92.6									
		azimuth																9			5,										
		TOE az																												-	
	-																														
		BKF	4.21	35.7	4.5																										
	ES.	TOB																													
	FS	BKF						5.19			5.22					5.4			5.59	1.3											
	-																														
	dept	wate	ē	9.0	3	Ŝ	ê	ä	3	Ξ		986	25	0.2		\$	88 G	Ġ	0.48	-	1.5	2									
		-																													
vation BM	FS	peq																						201	The second second second						
0 Elevation BM	FS FS	TP bed	199	293	2.8	6.02	99	5.98	6.14	585 2	6:36	9:28	6.79	6.58		67.6	7.08	10 N	5.92	7.4	7.91	2.67	27	2/	2/	27	27	27	27	27	27
ou –	HI FS FS	102.27 TP bed	199	5.63		6.02		5.98	6.14	585 2	6:36	9:28	6.79				7.08	10 N	5.92	7.4	7.91	2.67	102.27	102.27	102.2/	102.27	102.27	102.27	102.27	102.27	102.27
ou –	FS FS	102.27 TP bed	199	293	2.8	6.02	99	5.98	6.14	585 2	6:36	9:28	6.79	6.58		67.6	7.08	10 N	5.92	7.4	7.91	2.67	102.27	102.27	102.2/	102.27	102.27	102.27	102.27	102.27	102.27
ou –	HI FS FS	102.27 TP bed	199	293	2.8	6.02	99	5.98	6.14	585 2	6:36	9:28	6.79	6.58		67.6	7.08	10 N	5.92	7.4	7.91	2.67	102.27	102.27	102.2/	102.27	102.27	102.27	102.27	102.27	102.27
ou –	BS HI FS FS	2227 102.27 TP bed	102.27 6.61	102.27	102.27	102.27 6.02	102.27	102.27 5.98	6.14	102.27 5.95	102.27 6.36	102.27	102.27	102.27	102.27	102.27 6.79	102.27	102.27	102.27 6,92	102.27	102.27 7.91	102.27 6.67	102.27	102.27	102.2/	102.27	102.27	102.27	102.27	102.27	102.27
ou –	BS HI FS FS	227 102.27 TP bed	102.27 6.61	102.27	102.27	102.27 6.02	102.27	102.27 5.98	102.27 6,14	102.27 5.95	102.27 6.36	102.27	102.27	7.0	102.27	102.27 6.79	102.27	102.27	102.27 6,92	102.27	102.27 7.91	102.27 6.67	102.27	102.27	102.2/	102.27	102.27	102.27	102.27	102.27	102.27


Percent Riffle: Percent Pool: Material Silt/clay very fine sand fine sand coarse sand very coarse sand very fine gravel fine gravel fine gravel coarse gravel coarse gravel coarse gravel medium gravel medium gravel medium gravel coarse gravel coarse gravel coarse gravel medium cobble large cobble large cobble small boulder small boulder	Percent Riffle: 90 Percent Role: 10 Percent Pool: 10 0.00 Silt/clay 0.062 0.00 Very fine sand 0.05 0.00 Ine sand 0.05 0.00 Very coarse sand 0.25 0.00 Very coarse sand 0.25 0.00 Very coarse sand 0.25 0.00 Very coarse gravel 0.00 0.00 Ine gravel 0.00 0.00 Ine gravel 0.00 0.00 Ine gravel 0.00 0.00 Very coarse gravel 0.00 0.00 Very large cobble 0.00 0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Percent Run: Percent Run: Total #		Percent Finer Than 60 % % % % 00 00 00 00 00 00 00 00 00 00	1 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Pebble Count, County Line Creek tributary High Vista Golf Note: Classification Pebble Count Pebble Count I i i i i i i i i i i i i i i i i i i	Pebble Count, County Line Creek tributary High Vista Golf Classification Pebble Co	ibutary le Count, bble Count,	bble Count, County Line Creek tributary	Creek trib	Jary			
medium boulder	512	1024	0.0		O	0.01	0.1			10		100	1000	00	10000
medium boulder	512	1024	0.0		0	.o.	0.1			10		100	100	00	10000
large boulder	1024	2048	0.0		_	Particle Size (mm)	e (mm)		Cumulative Percent	4	Percent Item	Biffle	1000		OF: IC
very large boulder	2048	4096	0.0				·	o o	uigiive r eic	•	arceill Heili		inoli I		Cilde
bedrock			0.0	#		Size per	Size percent less than (mm)	an (mm)			Percer	Percent by substrate type	te type		
	Weighte	Weighted Count:	100	<u> </u>	D16	D35	D50	D84	D95	silt/clay	sand	aravel	cobble	boulder	hedrock
	0		1	_	1			.))	· ()	5	, i	1	- :	5

	ELEV	BKF TOB	\vdash																																	
	-	BKF TOB																91.93						89.89	89.72					88.15	87.2					
	ELEV	water srf	5.76			96.78	95.85	95.37	95.35			94.08		93.05		92.61	92.59	91.2	90.91	90.84	90.63			89.13	89.04			88.17	87.75	87.73	86.35					
	<u> </u>	peq	92.6	96.95	96.81	96.65	95.74	95.2	95.28	77		93.98	93.27	92.85	92.88	92.38	92.5	91.1	90.73	90.74	90.53		89.23	88.83	88.94			88.07	87.4	87.58	86.25	85.77				
	FS FS AZ																								100											
	FS FS F	TOB																7,55						956	9.76					7.8	8.25					
		water						71.0				40		2		82.0	60 O	0.1	0.18	20	5			276				10	0.35	0.15	1.0					
Elevation BM	FS FS		6,85		7.64	7.8	1.13	3.25		9.05		o d	6.21	59 G	9'6	G	96 G	8.38	8.75	878	8.95		10.25	10.65		3.05		138	8.05	7.87	28	996				e e e e e e e e e e e e e e e e e e e
001	BS HI		104.45	104.45	104.45	104.45	104,45	104.45	104.45	11	4.08 99.48	99.48	99.48	99.48	99.48	99.48	99.48	99,48	99.48	99.48	99,48	99.48	99.48	99.48	99.48	99.48	488 95.45	95,45	95.45	95.45	95.45	95.45	95,45	95.45	95.45	95.45
		section station			× 9.5		ше					ne de	ibris 59	59.5	\$3 -) (4) (4			7 6		96	96 ×	(17)	niek 115	J.			18. Di	432							
		notes	naling hdri	итте еттеко			(Onlekott	ol end debris jam	hd riffle	2			stemat de	1000 pt	end pool	ek pulha pa	nd riffle	ifffe/nick p	od byllling bo	d solution b	nd riffle		d riff/at mic	ool/below	t pullocal pr	٤		nd riffiniek	hd paol	nd riffle	endriffle	il nick/sim				

section:	Classifaction
	Riffle
	County Line Creek tributary

descri		


			height of ins	trument (ft):	104.45
	0	mit	distance	FS	
notes	I	ot.	(ft)	(ft)	elevation
	#			5.01	99.44
	Ħ	7	2	6.21	98.24
BKFL?	#	4	-8	6.98	97.47
edge bank	#		3.9	7.6	96.85
EOW	#]#	4	8	96.45
	71	#	5	7.95	96.5
THALWG]#	6	8	96.45
EOW:	Ħ	Ħ	6.6	7.7	96.75
	Ħ	#	7	7.77	96.68
	Ħ	H	. 8	7.62	96.83
	#[#	9	7,67	97.08
BKFL?	#[- 14	9.4	7:17	97.28
	#[10	6.51	97.94
	Ħ	_#	11	6.53	97.92
	M		12	6.24	98.21
	#[_#	18	5.83	98.62
	#[選	14	5.58	98.87
	\mathbb{H}	_#	15	5.19	99.26
pin	#[]#	15.8	4.74	99.71
	#[]#			
	#[_#	100		
	#	Щ			
	#[_#			
	#[]#			
	#[#			
	#E	#			

	FS bankfull	FS top of bank	W fpa channel Manning's (ft) slope (%) "n"	
	7.17	4.74	9.0 6.203 0.036	
Š	97.28	99.71		

imensio	ns		
3.3	x-section area	0.5	d mean
6.1	width	6.7	wet P
8.0	d max	0.5	hyd radi
3.3	bank ht	11.3	w/d ratio
9.0	W flood prone area	1.5	ent ratio

nydraulics	
6.4	velocity (ft/sec)
21.4	discharge rate, Q (cfs)
1.91	shear stress ((lbs/ft sq)
0.99	shear velocity (ft/sec)
13.543	unit stream power (lbs/ft/sec)
2.36	Froude number
6.5	friction factor u/u*
257.0	threshold grain size (mm)

check fror	n channel material		
86	measured D84 (mm)		
1.9	relative roughness	4.4	fric. factor
0.053	Manning's n from channel material		

Appendix E Site Photos

Stream Restoration

Client: Wetland Restoration Program (WRP)

Location: Hendersonville, NC

Henderson/Buncombe

Counties

Prepared by:

Nghi Thieu

Job Number:

011795006

Page 1 of 9

Photo 1: Begin Project - Pond area at 11th green

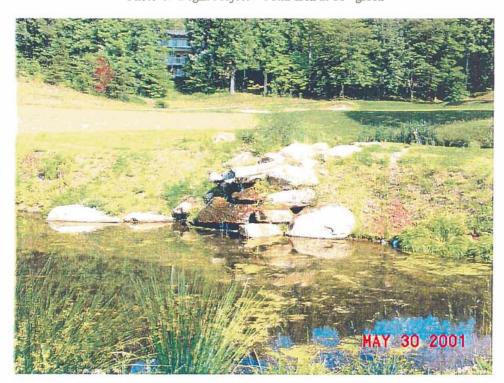


Photo 2: Begin Project - Pond area

Project: County Line Creek Stream Restoration

Client: Wetland Restoration Program (WRP)

Location: Hendersonville, NC

Henderson/Buncombe

Counties

Prepared by: Nghi Thieu

Job Number: 011795006

Page 2 of 9

Photo 3: Box Culvert at NC 191

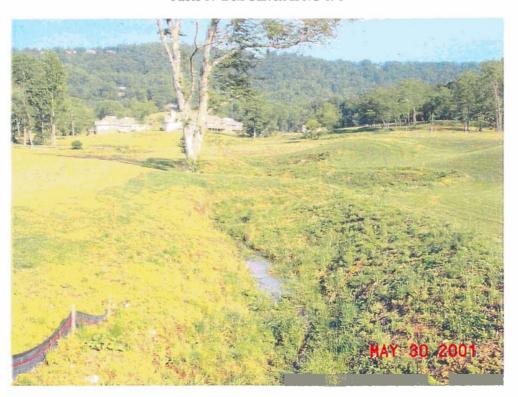


Photo 4: Looking downstream from tributary confluence - vegetation typical

Project: County Line Creek Stream Restoration

Client: Wetland Restoration

Program (WRP)

Location: Hendersonville, NC

Henderson/Buncombe

Counties

Prepared by: Nghi Thieu

Job Number: 011795006

Page 3 of 9

Photo 5: 13th green looking upstream

Photo 6: Looking upstream at 13th green

Stream Restoration

Client: Wetland Restoration Program (WRP)

Location: Hendersonville, NC

Henderson/Buncombe

Counties

Prepared by:

Nghi Thieu

Job Number:

011795006

Page 4 of 9

Photo 7: 2-60" RCP at end project (Fairway Falls Rd.)

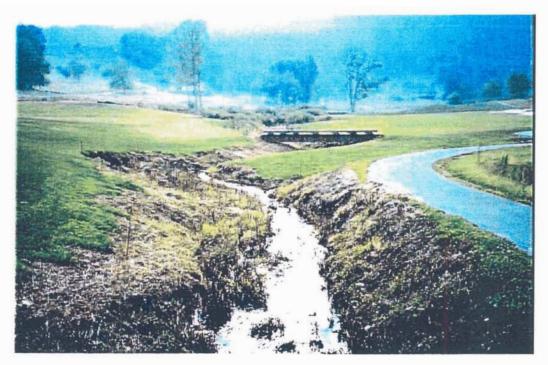


Photo 8: Looking upstream - eroded banks typical

Project: County Line Creek Stream Restoration

Client: Wetland Restoration

Program (WRP)

Location: Hendersonville, NC

Henderson/Buncombe

Counties

Prepared by: Nghi Thieu

Job Number: 011795006

Page 5 of 9

Photo 9: Good vegetation adjacent to 12th fairway (Sta. 5+00 to 10+00)

Photo 10: Stable d/s section used as reference

Project: County Line Creek Stream Restoration

Client: Wetland Restoration Program (WRP)

Location: Hendersonville, NC

Henderson/Buncombe

Counties

Prepared by: Nghi Thieu

Job Number: 011795006

Page 6 of 9

Photo 11: Vegetated area looking downstream (Sta. 7+00)

Photo 12: Stable area u/s of 12th green – looking upstream

Stream Restoration

Client: Wetland Restoration Program (WRP)

Location: Hendersonville, NC

Henderson/Buncombe

Counties

Prepared by: Nghi Thieu

Job Number:

011795006

Page 7 of 9

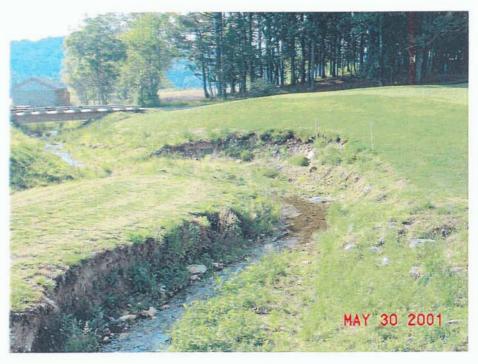


Photo 13: Eroded banks at 13th green - looking d/s

Photo 14: Severe erosion at greens

Stream Restoration

Client: Wetland Restoration Program (WRP)

Location: Hendersonville, NC

Henderson/Buncombe

Counties

Prepared by: Nghi Thieu

Job Number:

011795006

Page 8 of 9

Photo 15: Little to no vegetation - typical section b

Photo 16: Reference 2 - Stable downstream section of County Line Creek

Stream Restoration

Client: Wetland Restoration

Program (WRP)

Location: Hendersonville, NC

Henderson/Buncombe

Counties

Prepared by: Nghi Thieu

Job Number: 011795006

Page 9 of 9

Photo 17: Reference 2 - Tributary to County Line Creek looking d/s

Photo 18: Reference 2 – Upstream tributary, upstream of 11th green